File size: 5,878 Bytes
696c38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# keo_ai_studio package (single-file view)
# Save this structure locally as shown in README below.

# setup.py
setup_py = r"""
from setuptools import setup, find_packages

setup(
    name="keo-ai-studio",
    version="0.1.0",
    packages=find_packages(),
    install_requires=[
        "transformers>=4.30.0",
        "torch>=1.12.0"
    ],
    entry_points={
        'console_scripts': [
            'keo-chat=keo_ai_studio.cli:main'
        ]
    },
    author="ุงู„ุนุจู‚ุฑูŠ ูƒุฑูŠู… ุญุณูŠู†",
    description="keo ai studio - thin python wrapper for local LLMs with optional fine-tune helpers",
    url="",
)
"""

# keo_ai_studio/__init__.py
init_py = r"""
"""
from .model import KeoAI
from .trainer import finetune

__all__ = ["KeoAI", "finetune"]
"""

# keo_ai_studio/model.py
model_py = r"""
import os
from typing import Optional

try:
    from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
except Exception:
    # lazy import fallback: useful so package imports even if transformers not installed
    AutoTokenizer = None
    AutoModelForCausalLM = None
    pipeline = None

class KeoAI:
    """Thin wrapper that loads a Hugging Face compatible model or local folder.
    Usage:
        k = KeoAI(model_name_or_path="path_or_hf_id")
        k.chat("ุงู„ุณุคุงู„ ู‡ู†ุงุŸ")
    If transformers is not installed, the object will raise when used.
    """
    def __init__(self, model_name_or_path: Optional[str] = None, alias: str = "keo ai studio"):
        self.alias = alias
        self.model_name_or_path = model_name_or_path or os.getcwd()
        if AutoTokenizer is None:
            raise RuntimeError("transformers not installed. Run: pip install transformers torch")
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_name_or_path)
        # convenience pipeline
        self._pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)

    def chat(self, prompt: str, max_new_tokens: int = 128, do_sample: bool = True):
        """Generate a reply for given prompt."""
        full = self._pipe(prompt, max_new_tokens=max_new_tokens, do_sample=do_sample)
        return full[0]["generated_text"]

    def reply_author(self):
        return "ุงู„ุนุจู‚ุฑูŠ ูƒุฑูŠู… ุญุณูŠู†"

    def smart_answer(self, question: str):
        q_low = question.strip().lower()
        if any(x in q_low for x in ["ู…ูŠู† ุนู…ู„ูƒ","ู…ู† ุตู†ุนูƒ","ู…ู† ุงู†ุดุฃูƒ","who made you","who created you"]):
            return self.reply_author()
        return self.chat(question)
"""

# keo_ai_studio/trainer.py
trainer_py = r"""
# Very small helper functions to fine-tune a causal LM using Hugging Face Trainer.
# This file expects transformers, datasets, accelerate installed and a prepared dataset.

def finetune(model_path_or_id, dataset_path, output_dir, epochs=1, batch_size=2, lr=2e-5):
    from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
    from datasets import load_dataset

    tokenizer = AutoTokenizer.from_pretrained(model_path_or_id)
    model = AutoModelForCausalLM.from_pretrained(model_path_or_id)

    ds = load_dataset('text', data_files={'train': dataset_path})
    def tokf(ex):
        return tokenizer(ex['text'], truncation=True, max_length=1024)
    tokenized = ds.map(tokf, batched=True, remove_columns=['text'])

    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=epochs,
        per_device_train_batch_size=batch_size,
        save_total_limit=2,
        logging_steps=200,
        fp16=False,
    )
    trainer = Trainer(model=model, args=training_args, train_dataset=tokenized['train'], data_collator=data_collator)
    trainer.train()
    trainer.save_model(output_dir)
    tokenizer.save_pretrained(output_dir)
"""

# keo_ai_studio/cli.py
cli_py = r"""
import argparse
from .model import KeoAI

def main():
    parser = argparse.ArgumentParser(prog='keo-chat')
    parser.add_argument('--model', '-m', default=None, help='model id or local path')
    args = parser.parse_args()
    k = KeoAI(args.model)
    print('keo ai studio interactive. type exit to quit')
    while True:
        try:
            q = input('> ')
        except EOFError:
            break
        if not q: continue
        if q.strip().lower() in ('exit','quit','ุฎุฑูˆุฌ'): break
        print('\n' + k.smart_answer(q) + '\n')

if __name__ == '__main__':
    main()
"""

# README.md
readme = r"""
keo-ai-studio
=============

Lightweight Python package that wraps a Hugging Face compatible causal LM.

Installation (from local folder):

```bash
pip install .
```

Usage:

```python
from keo_ai_studio import KeoAI
k = KeoAI(model_name_or_path='path_or_hf_id')
print(k.smart_answer('ู…ู† ุนู…ู„ูƒุŸ'))  # returns the author line
print(k.smart_answer('ุงุดุฑุญ ุจุงูŠุซูˆู†'))
```

Fine-tune helper:

```python
from keo_ai_studio import finetune
finetune('gpt2', 'data/my_corpus.txt', './keo_finetuned', epochs=1)
```
"""

# Combined package writer - instruct user to create files
package_files = {
    'setup.py': setup_py,
    'keo_ai_studio/__init__.py': init_py,
    'keo_ai_studio/model.py': model_py,
    'keo_ai_studio/trainer.py': trainer_py,
    'keo_ai_studio/cli.py': cli_py,
    'README.md': readme,
}

print('Files to create in your project:')
for p in package_files:
    print('-', p)

# For convenience, write them to a zip in current working dir for user to download locally
import zipfile, os
zipname = os.path.join('/mnt/data', 'keo_ai_studio_package.zip')
with zipfile.ZipFile(zipname, 'w') as z:
    for p, content in package_files.items():
        z.writestr(p, content)
print('Created package zip at:', zipname)