File size: 39,044 Bytes
2ab7451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "machine_shape": "hm",
      "gpuType": "A100"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "🚗 TwinCar Project: SOTA Training, Full Visuals, and Advanced Reporting\n",
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n"
      ],
      "metadata": {
        "id": "a0ZBAxe0bXOx"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "1. Environment Setup and Imports\n",
        "Explanation:\n",
        "We start by importing all necessary libraries and prepping our working environment for advanced data handling and visualization.\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "bPASaByebhG1"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Block 1: Environment Setup and Imports\n",
        "import os\n",
        "import zipfile\n",
        "import numpy as np\n",
        "import pandas as pd\n",
        "import matplotlib.pyplot as plt\n",
        "import seaborn as sns\n",
        "from PIL import Image\n",
        "from tqdm import tqdm\n",
        "\n",
        "import torch\n",
        "import torch.nn as nn\n",
        "import torch.optim as optim\n",
        "from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler\n",
        "from torchvision import transforms\n",
        "\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.utils.class_weight import compute_class_weight\n",
        "from sklearn.metrics import (\n",
        "    accuracy_score, precision_score, recall_score, f1_score, hamming_loss,\n",
        "    cohen_kappa_score, matthews_corrcoef, jaccard_score,\n",
        "    confusion_matrix, classification_report\n",
        ")\n",
        "\n",
        "import timm\n",
        "import scipy.io\n"
      ],
      "metadata": {
        "id": "vA0sxHiWiJSG"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "2. Data Extraction and Preparation\n",
        "Explanation:\n",
        "We extract and organize the Stanford Cars dataset, parse .mat files to CSV for class and label mapping, and prepare all paths.\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "tzULBAPcbonR"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Block 2: Data Extraction and Preparation\n",
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "\n",
        "zip_path = '/content/drive/MyDrive/stanford_cars.zip'\n",
        "extract_dir = '/content/stanford_cars'\n",
        "if not os.path.exists(extract_dir):\n",
        "    with zipfile.ZipFile(zip_path, 'r') as zip_ref:\n",
        "        zip_ref.extractall(extract_dir)\n",
        "print(\"✅ Dataset extracted at\", extract_dir)\n",
        "\n",
        "meta = scipy.io.loadmat(f\"{extract_dir}/car_devkit/devkit/cars_meta.mat\")\n",
        "class_names = [x[0] for x in meta['class_names'][0]]\n",
        "NUM_CLASSES = len(class_names)\n",
        "\n",
        "train_annos = scipy.io.loadmat(f\"{extract_dir}/car_devkit/devkit/cars_train_annos.mat\")['annotations'][0]\n",
        "train_rows = [[x[5][0], int(x[4][0]) - 1] for x in train_annos]\n",
        "df_train = pd.DataFrame(train_rows, columns=[\"filename\", \"label\"])\n",
        "df_train.to_csv('/content/train_labels.csv', index=False)\n",
        "\n",
        "test_annos = scipy.io.loadmat(f\"{extract_dir}/car_devkit/devkit/cars_test_annos.mat\")['annotations'][0]\n",
        "test_rows = [[x[4][0]] for x in test_annos]\n",
        "df_test = pd.DataFrame(test_rows, columns=[\"filename\"])\n",
        "df_test.to_csv('/content/test_labels.csv', index=False)\n",
        "\n",
        "train_root = f\"{extract_dir}/cars_train/cars_train\"\n",
        "test_root = f\"{extract_dir}/cars_test/cars_test\"\n"
      ],
      "metadata": {
        "id": "2PbYf-0NiK9i"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "3. Advanced Dataset and Augmentations\n",
        "Explanation:\n",
        "We build a flexible dataset class, apply advanced augmentations, and lay the foundation for Mixup/CutMix later.\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "cbsjk1E2cBkc"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Block 3: Dataset and Advanced Augmentations\n",
        "\n",
        "class StanfordCarsFromCSV(Dataset):\n",
        "    def __init__(self, root_dir, csv_file, transform=None, has_labels=True):\n",
        "        self.root_dir = root_dir\n",
        "        self.data = pd.read_csv(csv_file)\n",
        "        self.transform = transform\n",
        "        self.has_labels = has_labels\n",
        "    def __len__(self):\n",
        "        return len(self.data)\n",
        "    def __getitem__(self, idx):\n",
        "        row = self.data.iloc[idx]\n",
        "        img_path = os.path.join(self.root_dir, row['filename'])\n",
        "        image = Image.open(img_path).convert('RGB')\n",
        "        if self.transform:\n",
        "            image = self.transform(image)\n",
        "        if self.has_labels:\n",
        "            return image, int(row['label'])\n",
        "        return image, row['filename']\n",
        "\n",
        "imagenet_mean = [0.485, 0.456, 0.406]\n",
        "imagenet_std = [0.229, 0.224, 0.225]\n",
        "train_transform = transforms.Compose([\n",
        "    transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),\n",
        "    transforms.RandomHorizontalFlip(),\n",
        "    transforms.RandomRotation(15),\n",
        "    transforms.ColorJitter(0.4, 0.4, 0.4, 0.2),\n",
        "    transforms.RandomApply([transforms.GaussianBlur(3)], p=0.15),\n",
        "    transforms.ToTensor(),\n",
        "    transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
        "])\n",
        "val_transform = transforms.Compose([\n",
        "    transforms.Resize(256),\n",
        "    transforms.CenterCrop(224),\n",
        "    transforms.ToTensor(),\n",
        "    transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
        "])"
      ],
      "metadata": {
        "id": "G5OmzLPDiMhj"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "4. Data Splitting, Weighted Sampling, and DataLoader\n",
        "Explanation:\n",
        "We split the data into train and validation sets with stratification for balanced classes,\n",
        "use class weighting to counter imbalance, and create PyTorch DataLoaders for efficient training and evaluation.\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "oO0V9Pe5cHQw"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# 4. Data Splitting, Loader Setup, and Weighted Sampling\n",
        "\n",
        "from torch.utils.data import DataLoader, WeightedRandomSampler\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.utils.class_weight import compute_class_weight\n",
        "\n",
        "# --- Settings ---\n",
        "BATCH_SIZE = 32\n",
        "VAL_RATIO = 0.1\n",
        "RANDOM_SEED = 42\n",
        "\n",
        "# --- Stratified Split for Balanced Classes ---\n",
        "df_all = pd.read_csv('/content/train_labels.csv')\n",
        "df_train, df_val = train_test_split(\n",
        "    df_all,\n",
        "    test_size=VAL_RATIO,\n",
        "    stratify=df_all['label'],\n",
        "    random_state=RANDOM_SEED\n",
        ")\n",
        "df_train.to_csv('/content/train_split.csv', index=False)\n",
        "df_val.to_csv('/content/val_split.csv', index=False)\n",
        "\n",
        "# --- Datasets ---\n",
        "train_dataset = StanfordCarsFromCSV(train_root, '/content/train_split.csv', train_transform)\n",
        "val_dataset = StanfordCarsFromCSV(train_root, '/content/val_split.csv', val_transform)\n",
        "test_dataset = StanfordCarsFromCSV(test_root, '/content/test_labels.csv', val_transform, has_labels=False)\n",
        "\n",
        "# --- Weighted Sampler for Balanced Training ---\n",
        "labels = [label for _, label in train_dataset]\n",
        "class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(labels), y=labels)\n",
        "sample_weights = [class_weights[label] for label in labels]\n",
        "sampler = WeightedRandomSampler(sample_weights, len(sample_weights), replacement=True)\n",
        "\n",
        "# --- DataLoaders (drop_last=True for Mixup/CutMix compatibility) ---\n",
        "train_loader = DataLoader(\n",
        "    train_dataset,\n",
        "    batch_size=BATCH_SIZE,\n",
        "    sampler=sampler,\n",
        "    num_workers=2,\n",
        "    pin_memory=True,\n",
        "    drop_last=True\n",
        ")\n",
        "val_loader = DataLoader(\n",
        "    val_dataset,\n",
        "    batch_size=BATCH_SIZE,\n",
        "    shuffle=False,\n",
        "    num_workers=2,\n",
        "    pin_memory=True,\n",
        "    drop_last=False\n",
        ")\n",
        "test_loader = DataLoader(\n",
        "    test_dataset,\n",
        "    batch_size=BATCH_SIZE,\n",
        "    shuffle=False,\n",
        "    num_workers=2,\n",
        "    pin_memory=True,\n",
        "    drop_last=False\n",
        ")\n",
        "\n",
        "print(f\"Train samples: {len(train_dataset)} | Val samples: {len(val_dataset)} | Test samples: {len(test_dataset)}\")\n",
        "print(f\"Train loader batches (per epoch): {len(train_loader)} (should be integer and even-sized)\")"
      ],
      "metadata": {
        "id": "eRMzI9P5iQbH"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "5. Model Initialization: EfficientNetV2 + Mixup/CutMix Ready\n",
        "Explanation:\n",
        "We load EfficientNetV2 with ImageNet weights for best transfer learning,\n",
        "set up optimizer, scheduler, and prepare for Mixup/CutMix advanced augmentation.\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "rRlHWMJAcs_P"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Block 5: Model Initialization (EfficientNetV2 + Mixup/CutMix)\n",
        "\n",
        "from timm.data import Mixup\n",
        "\n",
        "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
        "model = timm.create_model('efficientnetv2_rw_s', pretrained=True, num_classes=NUM_CLASSES, drop_rate=0.3)\n",
        "model = model.to(device)\n",
        "\n",
        "optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-5)\n",
        "scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=25)\n",
        "criterion = nn.CrossEntropyLoss(label_smoothing=0.0)\n",
        "\n",
        "mixup_fn = Mixup(\n",
        "    mixup_alpha=0.4, cutmix_alpha=1.0, cutmix_minmax=None,\n",
        "    prob=1.0, switch_prob=0.5, mode='batch',\n",
        "    label_smoothing=0.1, num_classes=NUM_CLASSES\n",
        ")"
      ],
      "metadata": {
        "id": "jFQEmTPCiRHo"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "6. Advanced Training Loop: Full Metrics, Early Stopping, and Mixup\n",
        "Explanation:\n",
        "This loop supports Mixup/CutMix, logs all advanced metrics, and uses early stopping with automatic best model saving.\n",
        "Ready for real production—and all your plots and reporting.\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "HJlzWR9jczcE"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Block 6: Advanced Training Loop\n",
        "\n",
        "EPOCHS = 25\n",
        "patience, counter = 7, 0\n",
        "best_val_f1 = 0\n",
        "\n",
        "metrics_dict = {\n",
        "    'train_loss': [], 'train_acc': [],\n",
        "    'val_loss': [], 'val_acc': [],\n",
        "    'val_precision_macro': [], 'val_precision_weighted': [],\n",
        "    'val_recall_macro': [], 'val_recall_weighted': [],\n",
        "    'val_f1_macro': [], 'val_f1_weighted': [],\n",
        "    'val_hamming': [], 'val_cohen_kappa': [],\n",
        "    'val_mcc': [], 'val_jaccard_macro': [],\n",
        "    'val_top3': [], 'val_top5': [],\n",
        "}\n",
        "\n",
        "for epoch in range(EPOCHS):\n",
        "    # TRAIN\n",
        "    model.train()\n",
        "    total_loss, correct, total = 0, 0, 0\n",
        "    for imgs, labels in tqdm(train_loader, desc=f\"Train Epoch {epoch+1}\"):\n",
        "        imgs, labels = imgs.to(device), labels.to(device)\n",
        "        optimizer.zero_grad()\n",
        "        imgs, labels = mixup_fn(imgs, labels)\n",
        "        outputs = model(imgs)\n",
        "        loss = criterion(outputs, labels)\n",
        "        loss.backward()\n",
        "        optimizer.step()\n",
        "        total_loss += loss.item() * imgs.size(0)\n",
        "        correct += (outputs.argmax(1) == labels.argmax(1)).sum().item()\n",
        "        total += labels.size(0)\n",
        "    train_loss = total_loss / total\n",
        "    train_acc = correct / total\n",
        "    metrics_dict['train_loss'].append(train_loss)\n",
        "    metrics_dict['train_acc'].append(train_acc)\n",
        "\n",
        "    # VALIDATION\n",
        "    model.eval()\n",
        "    val_loss, val_correct, val_total = 0, 0, 0\n",
        "    val_probs, val_preds, val_targets = [], [], []\n",
        "    with torch.no_grad():\n",
        "        for imgs, labels in tqdm(val_loader, desc=f\"Val Epoch {epoch+1}\"):\n",
        "            imgs, labels = imgs.to(device), labels.to(device)\n",
        "            outputs = model(imgs)\n",
        "            v_loss = criterion(outputs, labels)\n",
        "            val_loss += v_loss.item() * imgs.size(0)\n",
        "            probs = torch.softmax(outputs, dim=1)\n",
        "            preds = outputs.argmax(1)\n",
        "            val_correct += (preds == labels).sum().item()\n",
        "            val_total += labels.size(0)\n",
        "            val_probs.extend(probs.cpu().numpy())\n",
        "            val_preds.extend(preds.cpu().numpy())\n",
        "            val_targets.extend(labels.cpu().numpy())\n",
        "    val_loss /= val_total\n",
        "    val_acc = val_correct / val_total\n",
        "    val_preds_np = np.array(val_preds)\n",
        "    val_targets_np = np.array(val_targets)\n",
        "    val_probs_np = np.array(val_probs)\n",
        "\n",
        "    # Metrics\n",
        "    val_precision_macro = precision_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
        "    val_precision_weighted = precision_score(val_targets_np, val_preds_np, average='weighted', zero_division=0)\n",
        "    val_recall_macro = recall_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
        "    val_recall_weighted = recall_score(val_targets_np, val_preds_np, average='weighted', zero_division=0)\n",
        "    val_f1_macro = f1_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
        "    val_f1_weighted = f1_score(val_targets_np, val_preds_np, average='weighted', zero_division=0)\n",
        "    top3_acc = np.mean([\n",
        "        label in np.argsort(prob)[-3:] for prob, label in zip(val_probs_np, val_targets_np)\n",
        "    ])\n",
        "    top5_acc = np.mean([\n",
        "        label in np.argsort(prob)[-5:] for prob, label in zip(val_probs_np, val_targets_np)\n",
        "    ])\n",
        "    val_hamming = hamming_loss(val_targets_np, val_preds_np)\n",
        "    val_cohen_kappa = cohen_kappa_score(val_targets_np, val_preds_np)\n",
        "    val_mcc = matthews_corrcoef(val_targets_np, val_preds_np)\n",
        "    val_jaccard_macro = jaccard_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
        "\n",
        "    # Log metrics\n",
        "    metrics_dict['val_loss'].append(val_loss)\n",
        "    metrics_dict['val_acc'].append(val_acc)\n",
        "    metrics_dict['val_precision_macro'].append(val_precision_macro)\n",
        "    metrics_dict['val_precision_weighted'].append(val_precision_weighted)\n",
        "    metrics_dict['val_recall_macro'].append(val_recall_macro)\n",
        "    metrics_dict['val_recall_weighted'].append(val_recall_weighted)\n",
        "    metrics_dict['val_f1_macro'].append(val_f1_macro)\n",
        "    metrics_dict['val_f1_weighted'].append(val_f1_weighted)\n",
        "    metrics_dict['val_hamming'].append(val_hamming)\n",
        "    metrics_dict['val_cohen_kappa'].append(val_cohen_kappa)\n",
        "    metrics_dict['val_mcc'].append(val_mcc)\n",
        "    metrics_dict['val_jaccard_macro'].append(val_jaccard_macro)\n",
        "    metrics_dict['val_top3'].append(top3_acc)\n",
        "    metrics_dict['val_top5'].append(top5_acc)\n",
        "\n",
        "    scheduler.step()\n",
        "    print(f\"Epoch {epoch+1:2d} | Train Acc: {train_acc:.4f} | Val Acc: {val_acc:.4f} | F1(macro): {val_f1_macro:.4f} | Top3: {top3_acc:.3f} | Top5: {top5_acc:.3f}\")\n",
        "\n",
        "    # Early Stopping\n",
        "    if val_f1_macro > best_val_f1:\n",
        "        best_val_f1 = val_f1_macro\n",
        "        torch.save(model.state_dict(), '/content/drive/MyDrive/efficientnetv2_best_model.pth')\n",
        "        counter = 0\n",
        "    else:\n",
        "        counter += 1\n",
        "        if counter >= patience:\n",
        "            print(\"⏹️ Early stopping triggered.\")\n",
        "            break\n",
        "\n",
        "print(\"✅ Training complete. Best model saved.\")"
      ],
      "metadata": {
        "id": "gxl72Kyci6-I"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "7.Explanation\n",
        "After training, all metrics (accuracy, loss, precision, recall, F1, top-k, etc.) are saved as a CSV for analysis and reporting.\n",
        "\n",
        "We plot core metrics (accuracy, F1, loss, precision/recall, top-3/top-5 accuracy) with:\n",
        "\n",
        "Large, clear fonts\n",
        "\n",
        "Annotations for best epoch\n",
        "\n",
        "Colorful, pro-style Seaborn plots\n",
        "\n",
        "Publication-ready grid and tight layouts\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "V5ktk4Fec5SG"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# 7. Metrics Export & Advanced Visualizations\n",
        "\n",
        "import seaborn as sns\n",
        "\n",
        "# --- Save all metrics for reproducibility and later analysis\n",
        "metrics_df = pd.DataFrame(metrics_dict)\n",
        "metrics_df.to_csv('/content/drive/MyDrive/metrics_log.csv', index_label='epoch')\n",
        "print(\"✅ metrics_log.csv saved.\")\n",
        "\n",
        "sns.set(style='whitegrid', font_scale=1.3)\n",
        "\n",
        "# 1. Accuracy & Macro F1\n",
        "plt.figure(figsize=(12,7))\n",
        "plt.plot(metrics_df['train_acc'], label='Train Acc', lw=2)\n",
        "plt.plot(metrics_df['val_acc'], label='Val Acc', lw=2)\n",
        "plt.plot(metrics_df['val_f1_macro'], label='Val F1 (macro)', lw=2)\n",
        "plt.xlabel('Epoch', fontsize=16)\n",
        "plt.ylabel('Score', fontsize=16)\n",
        "plt.title('Accuracy and Macro F1 per Epoch', fontsize=18)\n",
        "plt.legend(loc='lower right')\n",
        "plt.grid(True, alpha=0.3)\n",
        "best_epoch = metrics_df['val_f1_macro'].idxmax()\n",
        "plt.scatter(best_epoch, metrics_df['val_f1_macro'][best_epoch], c='red', s=90, label='Best Epoch')\n",
        "plt.annotate(f'Best\\n{metrics_df[\"val_f1_macro\"][best_epoch]:.2f}',\n",
        "             (best_epoch, metrics_df[\"val_f1_macro\"][best_epoch]),\n",
        "             textcoords=\"offset points\", xytext=(-5,10), ha='right', fontsize=14, color='red')\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/metrics_acc_f1_beautiful.png')\n",
        "plt.show()\n",
        "\n",
        "# 2. Loss Curves\n",
        "plt.figure(figsize=(12,7))\n",
        "plt.plot(metrics_df['train_loss'], label='Train Loss', lw=2)\n",
        "plt.plot(metrics_df['val_loss'], label='Val Loss', lw=2)\n",
        "plt.xlabel('Epoch', fontsize=16)\n",
        "plt.ylabel('Loss', fontsize=16)\n",
        "plt.title('Train & Validation Loss per Epoch', fontsize=18)\n",
        "plt.legend(loc='upper right')\n",
        "plt.grid(True, alpha=0.3)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/metrics_loss_beautiful.png')\n",
        "plt.show()\n",
        "\n",
        "# 3. Precision & Recall (Macro & Weighted)\n",
        "plt.figure(figsize=(12,7))\n",
        "plt.plot(metrics_df['val_precision_macro'], label='Val Precision (macro)', lw=2)\n",
        "plt.plot(metrics_df['val_recall_macro'], label='Val Recall (macro)', lw=2)\n",
        "plt.plot(metrics_df['val_precision_weighted'], label='Val Precision (weighted)', lw=2)\n",
        "plt.plot(metrics_df['val_recall_weighted'], label='Val Recall (weighted)', lw=2)\n",
        "plt.xlabel('Epoch', fontsize=16)\n",
        "plt.ylabel('Score', fontsize=16)\n",
        "plt.title('Validation Precision & Recall per Epoch', fontsize=18)\n",
        "plt.legend(loc='lower right')\n",
        "plt.grid(True, alpha=0.3)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/metrics_precision_recall_beautiful.png')\n",
        "plt.show()\n",
        "\n",
        "# 4. Top-3 and Top-5 Validation Accuracy as Area Plot\n",
        "plt.figure(figsize=(12,7))\n",
        "plt.fill_between(metrics_df.index, metrics_df['val_top3'], alpha=0.3, label='Val Top-3 Acc')\n",
        "plt.fill_between(metrics_df.index, metrics_df['val_top5'], alpha=0.2, label='Val Top-5 Acc', color='orange')\n",
        "plt.plot(metrics_df['val_top3'], lw=2, color='blue')\n",
        "plt.plot(metrics_df['val_top5'], lw=2, color='orange')\n",
        "plt.xlabel('Epoch', fontsize=16)\n",
        "plt.ylabel('Accuracy', fontsize=16)\n",
        "plt.title('Top-3 and Top-5 Validation Accuracy per Epoch', fontsize=18)\n",
        "plt.legend(loc='lower right')\n",
        "plt.grid(True, alpha=0.3)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/metrics_topk_beautiful.png')\n",
        "plt.show()"
      ],
      "metadata": {
        "id": "3R95y5_ziT03"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "8.Confusion Matrix & Per-Class Analysis with Advanced Visuals\n",
        "Explanation\n",
        "After training, it's crucial to understand not just overall metrics, but where your model succeeds and fails.\n",
        "We:\n",
        "\n",
        "Save a detailed classification report (per-class precision/recall/F1).\n",
        "\n",
        "Draw a high-contrast confusion matrix with large ticks, tight color scaling, and readable value overlays.\n",
        "\n",
        "Plot Top 20 Most Confused Classes for targeted debugging.\n",
        "\n",
        "Show Top 20 Most Accurate Classes with horizontal barplots (values on bars, sorted).\n",
        "\n",
        "\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "jqxoLkAkefPH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# 8. Confusion Matrix & Per-Class Analysis (Advanced Visuals)\n",
        "\n",
        "from sklearn.metrics import classification_report, confusion_matrix\n",
        "import seaborn as sns\n",
        "\n",
        "# Reload best model for evaluation\n",
        "model.load_state_dict(torch.load('/content/drive/MyDrive/efficientnetv2_best_model.pth', map_location=device))\n",
        "model.eval()\n",
        "\n",
        "# Collect all validation predictions and true labels\n",
        "all_preds, all_labels = [], []\n",
        "with torch.no_grad():\n",
        "    for imgs, labels in val_loader:\n",
        "        imgs, labels = imgs.to(device), labels.to(device)\n",
        "        outputs = model(imgs)\n",
        "        preds = outputs.argmax(1)\n",
        "        all_preds.extend(preds.cpu().numpy())\n",
        "        all_labels.extend(labels.cpu().numpy())\n",
        "all_preds = np.array(all_preds)\n",
        "all_labels = np.array(all_labels)\n",
        "\n",
        "# Save detailed classification report (per-class)\n",
        "report = classification_report(\n",
        "    all_labels, all_preds, target_names=class_names, output_dict=True\n",
        ")\n",
        "pd.DataFrame(report).transpose().to_csv('/content/drive/MyDrive/classification_report.csv')\n",
        "print(\"✅ classification_report.csv saved.\")\n",
        "\n",
        "# Confusion Matrix (full, high-res)\n",
        "cm = confusion_matrix(all_labels, all_preds)\n",
        "plt.figure(figsize=(18,18))\n",
        "sns.heatmap(\n",
        "    cm,\n",
        "    cmap=\"Blues\",\n",
        "    xticklabels=class_names,\n",
        "    yticklabels=class_names,\n",
        "    square=True,\n",
        "    cbar_kws={\"shrink\": 0.5, \"label\": \"Count\"},\n",
        "    linewidths=.2\n",
        ")\n",
        "plt.title('Confusion Matrix', fontsize=20)\n",
        "plt.xlabel('Predicted label', fontsize=16)\n",
        "plt.ylabel('True label', fontsize=16)\n",
        "plt.xticks(fontsize=8, rotation=90)\n",
        "plt.yticks(fontsize=8)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/confusion_matrix_beautiful.png', dpi=300)\n",
        "plt.show()\n",
        "\n",
        "# Most Confused Classes (Top 20, value overlays)\n",
        "off_diag = cm.copy()\n",
        "np.fill_diagonal(off_diag, 0)\n",
        "most_confused = np.argsort(off_diag.sum(axis=1))[::-1][:20]\n",
        "cm_top = cm[np.ix_(most_confused, most_confused)]\n",
        "labels_top = [class_names[i] for i in most_confused]\n",
        "\n",
        "plt.figure(figsize=(12,10))\n",
        "sns.heatmap(\n",
        "    cm_top,\n",
        "    annot=True, fmt='d', cmap=\"Blues\",\n",
        "    xticklabels=labels_top, yticklabels=labels_top,\n",
        "    linewidths=.2, cbar=False, annot_kws={\"size\":14}\n",
        ")\n",
        "plt.title('Most Confused Classes (Top 20)', fontsize=18)\n",
        "plt.xlabel('Predicted label', fontsize=15)\n",
        "plt.ylabel('True label', fontsize=15)\n",
        "plt.xticks(fontsize=11, rotation=90)\n",
        "plt.yticks(fontsize=11)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/confused_top20_beautiful.png', dpi=300)\n",
        "plt.show()\n",
        "\n",
        "# Top-20 Most Accurate Classes (barplot, values on bars)\n",
        "acc_per_class = cm.diagonal() / (cm.sum(axis=1) + 1e-8)\n",
        "df_acc = pd.DataFrame({'class': class_names, 'accuracy': acc_per_class})\n",
        "top_acc = df_acc.sort_values('accuracy', ascending=False).head(20)\n",
        "plt.figure(figsize=(10,8))\n",
        "sns.barplot(\n",
        "    data=top_acc, y='class', x='accuracy', palette='Blues_d', orient='h'\n",
        ")\n",
        "plt.title('Top 20 Classes by Accuracy', fontsize=18)\n",
        "plt.xlabel('Accuracy', fontsize=15)\n",
        "plt.ylabel('Class', fontsize=15)\n",
        "for i, v in enumerate(top_acc['accuracy']):\n",
        "    plt.text(v + 0.01, i, f\"{v:.2f}\", color='blue', va='center', fontsize=13)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/top20_accuracy_beautiful.png', dpi=300)\n",
        "plt.show()"
      ],
      "metadata": {
        "id": "Bfth26_Uk1wY"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "9. Test-Time Augmentation (TTA) & Batch Prediction\n",
        "Explanation\n",
        "Test-Time Augmentation boosts prediction robustness by averaging predictions over multiple random transformations of each test image.\n",
        "Batch Prediction allows you to efficiently label a folder of test images with class names—production style."
      ],
      "metadata": {
        "id": "GyNkd0Cveop1"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# 9. Test-Time Augmentation (TTA) for Validation\n",
        "\n",
        "tta_transforms = [\n",
        "    val_transform,\n",
        "    transforms.Compose([\n",
        "        transforms.Resize(256),\n",
        "        transforms.RandomHorizontalFlip(p=1.0),\n",
        "        transforms.CenterCrop(224),\n",
        "        transforms.ToTensor(),\n",
        "        transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
        "    ]),\n",
        "    transforms.Compose([\n",
        "        transforms.Resize(256),\n",
        "        transforms.RandomRotation(10),\n",
        "        transforms.CenterCrop(224),\n",
        "        transforms.ToTensor(),\n",
        "        transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
        "    ]),\n",
        "    transforms.Compose([\n",
        "        transforms.Resize(256),\n",
        "        transforms.ColorJitter(0.2, 0.2, 0.2, 0.1),\n",
        "        transforms.CenterCrop(224),\n",
        "        transforms.ToTensor(),\n",
        "        transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
        "    ])\n",
        "]\n",
        "\n",
        "def tta_predict(model, img_pil, tta_transforms, device='cuda'):\n",
        "    model.eval()\n",
        "    logits = []\n",
        "    for tform in tta_transforms:\n",
        "        img = tform(img_pil).unsqueeze(0).to(device)\n",
        "        with torch.no_grad():\n",
        "            logit = model(img)\n",
        "            logits.append(logit)\n",
        "    avg_logits = torch.stack(logits).mean(0)\n",
        "    return avg_logits\n",
        "\n",
        "# Apply TTA to validation set\n",
        "tta_val_preds, tta_val_labels = [], []\n",
        "for imgs, labels in tqdm(val_loader, desc=\"TTA Validation\"):\n",
        "    batch_preds = []\n",
        "    for i in range(imgs.size(0)):\n",
        "        img_pil = transforms.ToPILImage()(imgs[i].cpu())\n",
        "        avg_logits = tta_predict(model, img_pil, tta_transforms, device)\n",
        "        pred = avg_logits.argmax(dim=1).cpu().item()\n",
        "        batch_preds.append(pred)\n",
        "    tta_val_preds.extend(batch_preds)\n",
        "    tta_val_labels.extend(labels.cpu().numpy())\n",
        "\n",
        "tta_val_preds = np.array(tta_val_preds)\n",
        "tta_val_labels = np.array(tta_val_labels)\n",
        "\n",
        "# Metrics for TTA\n",
        "tta_f1_macro = f1_score(tta_val_labels, tta_val_preds, average='macro', zero_division=0)\n",
        "tta_acc = accuracy_score(tta_val_labels, tta_val_preds)\n",
        "tta_precision = precision_score(tta_val_labels, tta_val_preds, average='macro', zero_division=0)\n",
        "tta_recall = recall_score(tta_val_labels, tta_val_preds, average='macro', zero_division=0)\n",
        "print(f\"TTA Validation Accuracy: {tta_acc:.4f}\")\n",
        "print(f\"TTA Validation F1 (macro): {tta_f1_macro:.4f}\")\n",
        "print(f\"TTA Validation Precision (macro): {tta_precision:.4f}\")\n",
        "print(f\"TTA Validation Recall (macro): {tta_recall:.4f}\")\n",
        "\n",
        "# TTA Confusion matrix (optional)\n",
        "cm_tta = confusion_matrix(tta_val_labels, tta_val_preds)\n",
        "plt.figure(figsize=(18,18))\n",
        "sns.heatmap(\n",
        "    cm_tta,\n",
        "    cmap=\"Purples\",\n",
        "    xticklabels=class_names,\n",
        "    yticklabels=class_names,\n",
        "    square=True,\n",
        "    cbar_kws={\"shrink\": 0.5, \"label\": \"Count\"},\n",
        "    linewidths=.2\n",
        ")\n",
        "plt.title('TTA Confusion Matrix (Validation)', fontsize=20)\n",
        "plt.xlabel('Predicted label', fontsize=16)\n",
        "plt.ylabel('True label', fontsize=16)\n",
        "plt.xticks(fontsize=8, rotation=90)\n",
        "plt.yticks(fontsize=8)\n",
        "plt.tight_layout()\n",
        "plt.savefig('/content/drive/MyDrive/tta_confusion_matrix_beautiful.png', dpi=300)\n",
        "plt.show()"
      ],
      "metadata": {
        "id": "-59H3ryck4v0"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "10. Extraordinary Grad-CAM++ Overlays (Grid)\n",
        "Explanation\n",
        "We generate Grad-CAM++ visualizations for a set of sample images.\n",
        "Each visualization shows:The input image,The Grad-CAM++ heatmap overlay,The true and predicted class for easy comparison.\n",
        "All visualizations are saved both individually and as a large, labeled grid.\n",
        "\n",
        "\n",
        "\n",
        "---"
      ],
      "metadata": {
        "id": "D_o2DOktmrxg"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Grad-CAM++ Explanations: Multi-Image Grid (Fixed for latest grad-cam)\n",
        "!pip install -U grad-cam --quiet\n",
        "\n",
        "from pytorch_grad_cam import GradCAMPlusPlus\n",
        "from pytorch_grad_cam.utils.image import show_cam_on_image\n",
        "from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget\n",
        "\n",
        "import os\n",
        "\n",
        "os.makedirs('/content/drive/MyDrive/gradcam_outputs', exist_ok=True)\n",
        "\n",
        "# Make sure model is on the right device\n",
        "model.eval()\n",
        "model.to(device)\n",
        "\n",
        "# Pick the right target layer for EfficientNetV2 (last block)\n",
        "target_layer = model.blocks[-1] if hasattr(model, \"blocks\") else model.layer4[-1]\n",
        "\n",
        "# No more use_cuda argument—just instantiate\n",
        "cam = GradCAMPlusPlus(model=model, target_layers=[target_layer])\n",
        "\n",
        "num_images = 12\n",
        "fig, axes = plt.subplots(3, 4, figsize=(18, 14))\n",
        "fig.suptitle('Grad-CAM++ Explanations: True vs. Predicted', fontsize=22, weight='bold')\n",
        "\n",
        "for idx in range(num_images):\n",
        "    img_tensor, label = val_dataset[idx]\n",
        "    img_pil = transforms.ToPILImage()(img_tensor.cpu())\n",
        "    input_tensor = img_tensor.unsqueeze(0).to(device)\n",
        "    with torch.no_grad():\n",
        "        output = model(input_tensor)\n",
        "        pred = output.argmax(1).item()\n",
        "    targets = [ClassifierOutputTarget(pred)]\n",
        "    grayscale_cam = cam(input_tensor=input_tensor, targets=targets)[0]\n",
        "    image_np = img_tensor.permute(1, 2, 0).cpu().numpy()\n",
        "    image_np = (image_np * np.array(imagenet_std)) + np.array(imagenet_mean)\n",
        "    image_np = np.clip(image_np, 0, 1)\n",
        "    cam_image = show_cam_on_image(image_np, grayscale_cam, use_rgb=True)\n",
        "\n",
        "    # Save each Grad-CAM overlay individually\n",
        "    overlay_path = f\"/content/drive/MyDrive/gradcam_outputs/val_{idx}_true_{class_names[label]}_pred_{class_names[pred]}.png\"\n",
        "    plt.imsave(overlay_path, cam_image)\n",
        "\n",
        "    # Add to grid\n",
        "    ax = axes[idx // 4, idx % 4]\n",
        "    ax.imshow(cam_image)\n",
        "    ax.set_title(\n",
        "        f\"True: {class_names[label][:18]}\\nPred: {class_names[pred][:18]}\",\n",
        "        fontsize=12,\n",
        "        color=\"green\" if pred == label else \"red\",\n",
        "        weight=\"bold\"\n",
        "    )\n",
        "    ax.axis('off')\n",
        "\n",
        "plt.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
        "plt.savefig('/content/drive/MyDrive/gradcam_outputs/gradcam_grid.png', dpi=250)\n",
        "plt.show()"
      ],
      "metadata": {
        "id": "Q27a8RhvwkSp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "11. Gradio Interactive Demo: Model + Grad-CAM++"
      ],
      "metadata": {
        "id": "FwB89-Gsm9mQ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# 11. Gradio Interactive Demo: EfficientNetV2 + Grad-CAM++\n",
        "\n",
        "import gradio as gr\n",
        "from PIL import Image as PILImage\n",
        "\n",
        "def predict_and_explain(img):\n",
        "    image_pil = img.convert(\"RGB\").resize((224, 224))\n",
        "    input_tensor = val_transform(image_pil).unsqueeze(0).to(device)\n",
        "    with torch.no_grad():\n",
        "        output = model(input_tensor)\n",
        "        pred_idx = output.argmax().item()\n",
        "    targets = [ClassifierOutputTarget(pred_idx)]\n",
        "    grayscale_cam = cam(input_tensor=input_tensor, targets=targets)[0]\n",
        "    image_np = np.array(image_pil).astype(np.float32) / 255.0\n",
        "    cam_image = show_cam_on_image(image_np, grayscale_cam, use_rgb=True)\n",
        "    pred_name = class_names[pred_idx]\n",
        "    return PILImage.fromarray(cam_image), f\"Prediction: {pred_name} (class index {pred_idx})\"\n",
        "\n",
        "demo = gr.Interface(\n",
        "    fn=predict_and_explain,\n",
        "    inputs=gr.Image(type=\"pil\", label=\"Upload Car Image\"),\n",
        "    outputs=[gr.Image(label=\"Grad-CAM++ Output\"), gr.Text(label=\"Prediction\")],\n",
        "    title=\"🚗 TwinCar: Car Make/Model Classifier + Explainability Demo\",\n",
        "    description=\"Upload a car photo. See the prediction (make/model/year) and a Grad-CAM++ heatmap showing what influenced the model.\",\n",
        "    allow_flagging='never'\n",
        ")\n",
        "demo.launch(share=True)"
      ],
      "metadata": {
        "id": "G6O3sgPdk5x2"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}