File size: 39,044 Bytes
2ab7451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"machine_shape": "hm",
"gpuType": "A100"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"🚗 TwinCar Project: SOTA Training, Full Visuals, and Advanced Reporting\n",
"\n",
"\n",
"---\n",
"\n",
"\n",
"---\n",
"\n",
"\n"
],
"metadata": {
"id": "a0ZBAxe0bXOx"
}
},
{
"cell_type": "markdown",
"source": [
"1. Environment Setup and Imports\n",
"Explanation:\n",
"We start by importing all necessary libraries and prepping our working environment for advanced data handling and visualization.\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "bPASaByebhG1"
}
},
{
"cell_type": "code",
"source": [
"# Block 1: Environment Setup and Imports\n",
"import os\n",
"import zipfile\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from PIL import Image\n",
"from tqdm import tqdm\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler\n",
"from torchvision import transforms\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.utils.class_weight import compute_class_weight\n",
"from sklearn.metrics import (\n",
" accuracy_score, precision_score, recall_score, f1_score, hamming_loss,\n",
" cohen_kappa_score, matthews_corrcoef, jaccard_score,\n",
" confusion_matrix, classification_report\n",
")\n",
"\n",
"import timm\n",
"import scipy.io\n"
],
"metadata": {
"id": "vA0sxHiWiJSG"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"2. Data Extraction and Preparation\n",
"Explanation:\n",
"We extract and organize the Stanford Cars dataset, parse .mat files to CSV for class and label mapping, and prepare all paths.\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "tzULBAPcbonR"
}
},
{
"cell_type": "code",
"source": [
"# Block 2: Data Extraction and Preparation\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')\n",
"\n",
"zip_path = '/content/drive/MyDrive/stanford_cars.zip'\n",
"extract_dir = '/content/stanford_cars'\n",
"if not os.path.exists(extract_dir):\n",
" with zipfile.ZipFile(zip_path, 'r') as zip_ref:\n",
" zip_ref.extractall(extract_dir)\n",
"print(\"✅ Dataset extracted at\", extract_dir)\n",
"\n",
"meta = scipy.io.loadmat(f\"{extract_dir}/car_devkit/devkit/cars_meta.mat\")\n",
"class_names = [x[0] for x in meta['class_names'][0]]\n",
"NUM_CLASSES = len(class_names)\n",
"\n",
"train_annos = scipy.io.loadmat(f\"{extract_dir}/car_devkit/devkit/cars_train_annos.mat\")['annotations'][0]\n",
"train_rows = [[x[5][0], int(x[4][0]) - 1] for x in train_annos]\n",
"df_train = pd.DataFrame(train_rows, columns=[\"filename\", \"label\"])\n",
"df_train.to_csv('/content/train_labels.csv', index=False)\n",
"\n",
"test_annos = scipy.io.loadmat(f\"{extract_dir}/car_devkit/devkit/cars_test_annos.mat\")['annotations'][0]\n",
"test_rows = [[x[4][0]] for x in test_annos]\n",
"df_test = pd.DataFrame(test_rows, columns=[\"filename\"])\n",
"df_test.to_csv('/content/test_labels.csv', index=False)\n",
"\n",
"train_root = f\"{extract_dir}/cars_train/cars_train\"\n",
"test_root = f\"{extract_dir}/cars_test/cars_test\"\n"
],
"metadata": {
"id": "2PbYf-0NiK9i"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"3. Advanced Dataset and Augmentations\n",
"Explanation:\n",
"We build a flexible dataset class, apply advanced augmentations, and lay the foundation for Mixup/CutMix later.\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "cbsjk1E2cBkc"
}
},
{
"cell_type": "code",
"source": [
"# Block 3: Dataset and Advanced Augmentations\n",
"\n",
"class StanfordCarsFromCSV(Dataset):\n",
" def __init__(self, root_dir, csv_file, transform=None, has_labels=True):\n",
" self.root_dir = root_dir\n",
" self.data = pd.read_csv(csv_file)\n",
" self.transform = transform\n",
" self.has_labels = has_labels\n",
" def __len__(self):\n",
" return len(self.data)\n",
" def __getitem__(self, idx):\n",
" row = self.data.iloc[idx]\n",
" img_path = os.path.join(self.root_dir, row['filename'])\n",
" image = Image.open(img_path).convert('RGB')\n",
" if self.transform:\n",
" image = self.transform(image)\n",
" if self.has_labels:\n",
" return image, int(row['label'])\n",
" return image, row['filename']\n",
"\n",
"imagenet_mean = [0.485, 0.456, 0.406]\n",
"imagenet_std = [0.229, 0.224, 0.225]\n",
"train_transform = transforms.Compose([\n",
" transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.RandomRotation(15),\n",
" transforms.ColorJitter(0.4, 0.4, 0.4, 0.2),\n",
" transforms.RandomApply([transforms.GaussianBlur(3)], p=0.15),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
"])\n",
"val_transform = transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
"])"
],
"metadata": {
"id": "G5OmzLPDiMhj"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"4. Data Splitting, Weighted Sampling, and DataLoader\n",
"Explanation:\n",
"We split the data into train and validation sets with stratification for balanced classes,\n",
"use class weighting to counter imbalance, and create PyTorch DataLoaders for efficient training and evaluation.\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "oO0V9Pe5cHQw"
}
},
{
"cell_type": "code",
"source": [
"# 4. Data Splitting, Loader Setup, and Weighted Sampling\n",
"\n",
"from torch.utils.data import DataLoader, WeightedRandomSampler\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.utils.class_weight import compute_class_weight\n",
"\n",
"# --- Settings ---\n",
"BATCH_SIZE = 32\n",
"VAL_RATIO = 0.1\n",
"RANDOM_SEED = 42\n",
"\n",
"# --- Stratified Split for Balanced Classes ---\n",
"df_all = pd.read_csv('/content/train_labels.csv')\n",
"df_train, df_val = train_test_split(\n",
" df_all,\n",
" test_size=VAL_RATIO,\n",
" stratify=df_all['label'],\n",
" random_state=RANDOM_SEED\n",
")\n",
"df_train.to_csv('/content/train_split.csv', index=False)\n",
"df_val.to_csv('/content/val_split.csv', index=False)\n",
"\n",
"# --- Datasets ---\n",
"train_dataset = StanfordCarsFromCSV(train_root, '/content/train_split.csv', train_transform)\n",
"val_dataset = StanfordCarsFromCSV(train_root, '/content/val_split.csv', val_transform)\n",
"test_dataset = StanfordCarsFromCSV(test_root, '/content/test_labels.csv', val_transform, has_labels=False)\n",
"\n",
"# --- Weighted Sampler for Balanced Training ---\n",
"labels = [label for _, label in train_dataset]\n",
"class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(labels), y=labels)\n",
"sample_weights = [class_weights[label] for label in labels]\n",
"sampler = WeightedRandomSampler(sample_weights, len(sample_weights), replacement=True)\n",
"\n",
"# --- DataLoaders (drop_last=True for Mixup/CutMix compatibility) ---\n",
"train_loader = DataLoader(\n",
" train_dataset,\n",
" batch_size=BATCH_SIZE,\n",
" sampler=sampler,\n",
" num_workers=2,\n",
" pin_memory=True,\n",
" drop_last=True\n",
")\n",
"val_loader = DataLoader(\n",
" val_dataset,\n",
" batch_size=BATCH_SIZE,\n",
" shuffle=False,\n",
" num_workers=2,\n",
" pin_memory=True,\n",
" drop_last=False\n",
")\n",
"test_loader = DataLoader(\n",
" test_dataset,\n",
" batch_size=BATCH_SIZE,\n",
" shuffle=False,\n",
" num_workers=2,\n",
" pin_memory=True,\n",
" drop_last=False\n",
")\n",
"\n",
"print(f\"Train samples: {len(train_dataset)} | Val samples: {len(val_dataset)} | Test samples: {len(test_dataset)}\")\n",
"print(f\"Train loader batches (per epoch): {len(train_loader)} (should be integer and even-sized)\")"
],
"metadata": {
"id": "eRMzI9P5iQbH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"5. Model Initialization: EfficientNetV2 + Mixup/CutMix Ready\n",
"Explanation:\n",
"We load EfficientNetV2 with ImageNet weights for best transfer learning,\n",
"set up optimizer, scheduler, and prepare for Mixup/CutMix advanced augmentation.\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "rRlHWMJAcs_P"
}
},
{
"cell_type": "code",
"source": [
"# Block 5: Model Initialization (EfficientNetV2 + Mixup/CutMix)\n",
"\n",
"from timm.data import Mixup\n",
"\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"model = timm.create_model('efficientnetv2_rw_s', pretrained=True, num_classes=NUM_CLASSES, drop_rate=0.3)\n",
"model = model.to(device)\n",
"\n",
"optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-5)\n",
"scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=25)\n",
"criterion = nn.CrossEntropyLoss(label_smoothing=0.0)\n",
"\n",
"mixup_fn = Mixup(\n",
" mixup_alpha=0.4, cutmix_alpha=1.0, cutmix_minmax=None,\n",
" prob=1.0, switch_prob=0.5, mode='batch',\n",
" label_smoothing=0.1, num_classes=NUM_CLASSES\n",
")"
],
"metadata": {
"id": "jFQEmTPCiRHo"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"6. Advanced Training Loop: Full Metrics, Early Stopping, and Mixup\n",
"Explanation:\n",
"This loop supports Mixup/CutMix, logs all advanced metrics, and uses early stopping with automatic best model saving.\n",
"Ready for real production—and all your plots and reporting.\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "HJlzWR9jczcE"
}
},
{
"cell_type": "code",
"source": [
"# Block 6: Advanced Training Loop\n",
"\n",
"EPOCHS = 25\n",
"patience, counter = 7, 0\n",
"best_val_f1 = 0\n",
"\n",
"metrics_dict = {\n",
" 'train_loss': [], 'train_acc': [],\n",
" 'val_loss': [], 'val_acc': [],\n",
" 'val_precision_macro': [], 'val_precision_weighted': [],\n",
" 'val_recall_macro': [], 'val_recall_weighted': [],\n",
" 'val_f1_macro': [], 'val_f1_weighted': [],\n",
" 'val_hamming': [], 'val_cohen_kappa': [],\n",
" 'val_mcc': [], 'val_jaccard_macro': [],\n",
" 'val_top3': [], 'val_top5': [],\n",
"}\n",
"\n",
"for epoch in range(EPOCHS):\n",
" # TRAIN\n",
" model.train()\n",
" total_loss, correct, total = 0, 0, 0\n",
" for imgs, labels in tqdm(train_loader, desc=f\"Train Epoch {epoch+1}\"):\n",
" imgs, labels = imgs.to(device), labels.to(device)\n",
" optimizer.zero_grad()\n",
" imgs, labels = mixup_fn(imgs, labels)\n",
" outputs = model(imgs)\n",
" loss = criterion(outputs, labels)\n",
" loss.backward()\n",
" optimizer.step()\n",
" total_loss += loss.item() * imgs.size(0)\n",
" correct += (outputs.argmax(1) == labels.argmax(1)).sum().item()\n",
" total += labels.size(0)\n",
" train_loss = total_loss / total\n",
" train_acc = correct / total\n",
" metrics_dict['train_loss'].append(train_loss)\n",
" metrics_dict['train_acc'].append(train_acc)\n",
"\n",
" # VALIDATION\n",
" model.eval()\n",
" val_loss, val_correct, val_total = 0, 0, 0\n",
" val_probs, val_preds, val_targets = [], [], []\n",
" with torch.no_grad():\n",
" for imgs, labels in tqdm(val_loader, desc=f\"Val Epoch {epoch+1}\"):\n",
" imgs, labels = imgs.to(device), labels.to(device)\n",
" outputs = model(imgs)\n",
" v_loss = criterion(outputs, labels)\n",
" val_loss += v_loss.item() * imgs.size(0)\n",
" probs = torch.softmax(outputs, dim=1)\n",
" preds = outputs.argmax(1)\n",
" val_correct += (preds == labels).sum().item()\n",
" val_total += labels.size(0)\n",
" val_probs.extend(probs.cpu().numpy())\n",
" val_preds.extend(preds.cpu().numpy())\n",
" val_targets.extend(labels.cpu().numpy())\n",
" val_loss /= val_total\n",
" val_acc = val_correct / val_total\n",
" val_preds_np = np.array(val_preds)\n",
" val_targets_np = np.array(val_targets)\n",
" val_probs_np = np.array(val_probs)\n",
"\n",
" # Metrics\n",
" val_precision_macro = precision_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
" val_precision_weighted = precision_score(val_targets_np, val_preds_np, average='weighted', zero_division=0)\n",
" val_recall_macro = recall_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
" val_recall_weighted = recall_score(val_targets_np, val_preds_np, average='weighted', zero_division=0)\n",
" val_f1_macro = f1_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
" val_f1_weighted = f1_score(val_targets_np, val_preds_np, average='weighted', zero_division=0)\n",
" top3_acc = np.mean([\n",
" label in np.argsort(prob)[-3:] for prob, label in zip(val_probs_np, val_targets_np)\n",
" ])\n",
" top5_acc = np.mean([\n",
" label in np.argsort(prob)[-5:] for prob, label in zip(val_probs_np, val_targets_np)\n",
" ])\n",
" val_hamming = hamming_loss(val_targets_np, val_preds_np)\n",
" val_cohen_kappa = cohen_kappa_score(val_targets_np, val_preds_np)\n",
" val_mcc = matthews_corrcoef(val_targets_np, val_preds_np)\n",
" val_jaccard_macro = jaccard_score(val_targets_np, val_preds_np, average='macro', zero_division=0)\n",
"\n",
" # Log metrics\n",
" metrics_dict['val_loss'].append(val_loss)\n",
" metrics_dict['val_acc'].append(val_acc)\n",
" metrics_dict['val_precision_macro'].append(val_precision_macro)\n",
" metrics_dict['val_precision_weighted'].append(val_precision_weighted)\n",
" metrics_dict['val_recall_macro'].append(val_recall_macro)\n",
" metrics_dict['val_recall_weighted'].append(val_recall_weighted)\n",
" metrics_dict['val_f1_macro'].append(val_f1_macro)\n",
" metrics_dict['val_f1_weighted'].append(val_f1_weighted)\n",
" metrics_dict['val_hamming'].append(val_hamming)\n",
" metrics_dict['val_cohen_kappa'].append(val_cohen_kappa)\n",
" metrics_dict['val_mcc'].append(val_mcc)\n",
" metrics_dict['val_jaccard_macro'].append(val_jaccard_macro)\n",
" metrics_dict['val_top3'].append(top3_acc)\n",
" metrics_dict['val_top5'].append(top5_acc)\n",
"\n",
" scheduler.step()\n",
" print(f\"Epoch {epoch+1:2d} | Train Acc: {train_acc:.4f} | Val Acc: {val_acc:.4f} | F1(macro): {val_f1_macro:.4f} | Top3: {top3_acc:.3f} | Top5: {top5_acc:.3f}\")\n",
"\n",
" # Early Stopping\n",
" if val_f1_macro > best_val_f1:\n",
" best_val_f1 = val_f1_macro\n",
" torch.save(model.state_dict(), '/content/drive/MyDrive/efficientnetv2_best_model.pth')\n",
" counter = 0\n",
" else:\n",
" counter += 1\n",
" if counter >= patience:\n",
" print(\"⏹️ Early stopping triggered.\")\n",
" break\n",
"\n",
"print(\"✅ Training complete. Best model saved.\")"
],
"metadata": {
"id": "gxl72Kyci6-I"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"7.Explanation\n",
"After training, all metrics (accuracy, loss, precision, recall, F1, top-k, etc.) are saved as a CSV for analysis and reporting.\n",
"\n",
"We plot core metrics (accuracy, F1, loss, precision/recall, top-3/top-5 accuracy) with:\n",
"\n",
"Large, clear fonts\n",
"\n",
"Annotations for best epoch\n",
"\n",
"Colorful, pro-style Seaborn plots\n",
"\n",
"Publication-ready grid and tight layouts\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "V5ktk4Fec5SG"
}
},
{
"cell_type": "code",
"source": [
"# 7. Metrics Export & Advanced Visualizations\n",
"\n",
"import seaborn as sns\n",
"\n",
"# --- Save all metrics for reproducibility and later analysis\n",
"metrics_df = pd.DataFrame(metrics_dict)\n",
"metrics_df.to_csv('/content/drive/MyDrive/metrics_log.csv', index_label='epoch')\n",
"print(\"✅ metrics_log.csv saved.\")\n",
"\n",
"sns.set(style='whitegrid', font_scale=1.3)\n",
"\n",
"# 1. Accuracy & Macro F1\n",
"plt.figure(figsize=(12,7))\n",
"plt.plot(metrics_df['train_acc'], label='Train Acc', lw=2)\n",
"plt.plot(metrics_df['val_acc'], label='Val Acc', lw=2)\n",
"plt.plot(metrics_df['val_f1_macro'], label='Val F1 (macro)', lw=2)\n",
"plt.xlabel('Epoch', fontsize=16)\n",
"plt.ylabel('Score', fontsize=16)\n",
"plt.title('Accuracy and Macro F1 per Epoch', fontsize=18)\n",
"plt.legend(loc='lower right')\n",
"plt.grid(True, alpha=0.3)\n",
"best_epoch = metrics_df['val_f1_macro'].idxmax()\n",
"plt.scatter(best_epoch, metrics_df['val_f1_macro'][best_epoch], c='red', s=90, label='Best Epoch')\n",
"plt.annotate(f'Best\\n{metrics_df[\"val_f1_macro\"][best_epoch]:.2f}',\n",
" (best_epoch, metrics_df[\"val_f1_macro\"][best_epoch]),\n",
" textcoords=\"offset points\", xytext=(-5,10), ha='right', fontsize=14, color='red')\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/metrics_acc_f1_beautiful.png')\n",
"plt.show()\n",
"\n",
"# 2. Loss Curves\n",
"plt.figure(figsize=(12,7))\n",
"plt.plot(metrics_df['train_loss'], label='Train Loss', lw=2)\n",
"plt.plot(metrics_df['val_loss'], label='Val Loss', lw=2)\n",
"plt.xlabel('Epoch', fontsize=16)\n",
"plt.ylabel('Loss', fontsize=16)\n",
"plt.title('Train & Validation Loss per Epoch', fontsize=18)\n",
"plt.legend(loc='upper right')\n",
"plt.grid(True, alpha=0.3)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/metrics_loss_beautiful.png')\n",
"plt.show()\n",
"\n",
"# 3. Precision & Recall (Macro & Weighted)\n",
"plt.figure(figsize=(12,7))\n",
"plt.plot(metrics_df['val_precision_macro'], label='Val Precision (macro)', lw=2)\n",
"plt.plot(metrics_df['val_recall_macro'], label='Val Recall (macro)', lw=2)\n",
"plt.plot(metrics_df['val_precision_weighted'], label='Val Precision (weighted)', lw=2)\n",
"plt.plot(metrics_df['val_recall_weighted'], label='Val Recall (weighted)', lw=2)\n",
"plt.xlabel('Epoch', fontsize=16)\n",
"plt.ylabel('Score', fontsize=16)\n",
"plt.title('Validation Precision & Recall per Epoch', fontsize=18)\n",
"plt.legend(loc='lower right')\n",
"plt.grid(True, alpha=0.3)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/metrics_precision_recall_beautiful.png')\n",
"plt.show()\n",
"\n",
"# 4. Top-3 and Top-5 Validation Accuracy as Area Plot\n",
"plt.figure(figsize=(12,7))\n",
"plt.fill_between(metrics_df.index, metrics_df['val_top3'], alpha=0.3, label='Val Top-3 Acc')\n",
"plt.fill_between(metrics_df.index, metrics_df['val_top5'], alpha=0.2, label='Val Top-5 Acc', color='orange')\n",
"plt.plot(metrics_df['val_top3'], lw=2, color='blue')\n",
"plt.plot(metrics_df['val_top5'], lw=2, color='orange')\n",
"plt.xlabel('Epoch', fontsize=16)\n",
"plt.ylabel('Accuracy', fontsize=16)\n",
"plt.title('Top-3 and Top-5 Validation Accuracy per Epoch', fontsize=18)\n",
"plt.legend(loc='lower right')\n",
"plt.grid(True, alpha=0.3)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/metrics_topk_beautiful.png')\n",
"plt.show()"
],
"metadata": {
"id": "3R95y5_ziT03"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"8.Confusion Matrix & Per-Class Analysis with Advanced Visuals\n",
"Explanation\n",
"After training, it's crucial to understand not just overall metrics, but where your model succeeds and fails.\n",
"We:\n",
"\n",
"Save a detailed classification report (per-class precision/recall/F1).\n",
"\n",
"Draw a high-contrast confusion matrix with large ticks, tight color scaling, and readable value overlays.\n",
"\n",
"Plot Top 20 Most Confused Classes for targeted debugging.\n",
"\n",
"Show Top 20 Most Accurate Classes with horizontal barplots (values on bars, sorted).\n",
"\n",
"\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "jqxoLkAkefPH"
}
},
{
"cell_type": "code",
"source": [
"# 8. Confusion Matrix & Per-Class Analysis (Advanced Visuals)\n",
"\n",
"from sklearn.metrics import classification_report, confusion_matrix\n",
"import seaborn as sns\n",
"\n",
"# Reload best model for evaluation\n",
"model.load_state_dict(torch.load('/content/drive/MyDrive/efficientnetv2_best_model.pth', map_location=device))\n",
"model.eval()\n",
"\n",
"# Collect all validation predictions and true labels\n",
"all_preds, all_labels = [], []\n",
"with torch.no_grad():\n",
" for imgs, labels in val_loader:\n",
" imgs, labels = imgs.to(device), labels.to(device)\n",
" outputs = model(imgs)\n",
" preds = outputs.argmax(1)\n",
" all_preds.extend(preds.cpu().numpy())\n",
" all_labels.extend(labels.cpu().numpy())\n",
"all_preds = np.array(all_preds)\n",
"all_labels = np.array(all_labels)\n",
"\n",
"# Save detailed classification report (per-class)\n",
"report = classification_report(\n",
" all_labels, all_preds, target_names=class_names, output_dict=True\n",
")\n",
"pd.DataFrame(report).transpose().to_csv('/content/drive/MyDrive/classification_report.csv')\n",
"print(\"✅ classification_report.csv saved.\")\n",
"\n",
"# Confusion Matrix (full, high-res)\n",
"cm = confusion_matrix(all_labels, all_preds)\n",
"plt.figure(figsize=(18,18))\n",
"sns.heatmap(\n",
" cm,\n",
" cmap=\"Blues\",\n",
" xticklabels=class_names,\n",
" yticklabels=class_names,\n",
" square=True,\n",
" cbar_kws={\"shrink\": 0.5, \"label\": \"Count\"},\n",
" linewidths=.2\n",
")\n",
"plt.title('Confusion Matrix', fontsize=20)\n",
"plt.xlabel('Predicted label', fontsize=16)\n",
"plt.ylabel('True label', fontsize=16)\n",
"plt.xticks(fontsize=8, rotation=90)\n",
"plt.yticks(fontsize=8)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/confusion_matrix_beautiful.png', dpi=300)\n",
"plt.show()\n",
"\n",
"# Most Confused Classes (Top 20, value overlays)\n",
"off_diag = cm.copy()\n",
"np.fill_diagonal(off_diag, 0)\n",
"most_confused = np.argsort(off_diag.sum(axis=1))[::-1][:20]\n",
"cm_top = cm[np.ix_(most_confused, most_confused)]\n",
"labels_top = [class_names[i] for i in most_confused]\n",
"\n",
"plt.figure(figsize=(12,10))\n",
"sns.heatmap(\n",
" cm_top,\n",
" annot=True, fmt='d', cmap=\"Blues\",\n",
" xticklabels=labels_top, yticklabels=labels_top,\n",
" linewidths=.2, cbar=False, annot_kws={\"size\":14}\n",
")\n",
"plt.title('Most Confused Classes (Top 20)', fontsize=18)\n",
"plt.xlabel('Predicted label', fontsize=15)\n",
"plt.ylabel('True label', fontsize=15)\n",
"plt.xticks(fontsize=11, rotation=90)\n",
"plt.yticks(fontsize=11)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/confused_top20_beautiful.png', dpi=300)\n",
"plt.show()\n",
"\n",
"# Top-20 Most Accurate Classes (barplot, values on bars)\n",
"acc_per_class = cm.diagonal() / (cm.sum(axis=1) + 1e-8)\n",
"df_acc = pd.DataFrame({'class': class_names, 'accuracy': acc_per_class})\n",
"top_acc = df_acc.sort_values('accuracy', ascending=False).head(20)\n",
"plt.figure(figsize=(10,8))\n",
"sns.barplot(\n",
" data=top_acc, y='class', x='accuracy', palette='Blues_d', orient='h'\n",
")\n",
"plt.title('Top 20 Classes by Accuracy', fontsize=18)\n",
"plt.xlabel('Accuracy', fontsize=15)\n",
"plt.ylabel('Class', fontsize=15)\n",
"for i, v in enumerate(top_acc['accuracy']):\n",
" plt.text(v + 0.01, i, f\"{v:.2f}\", color='blue', va='center', fontsize=13)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/top20_accuracy_beautiful.png', dpi=300)\n",
"plt.show()"
],
"metadata": {
"id": "Bfth26_Uk1wY"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"9. Test-Time Augmentation (TTA) & Batch Prediction\n",
"Explanation\n",
"Test-Time Augmentation boosts prediction robustness by averaging predictions over multiple random transformations of each test image.\n",
"Batch Prediction allows you to efficiently label a folder of test images with class names—production style."
],
"metadata": {
"id": "GyNkd0Cveop1"
}
},
{
"cell_type": "code",
"source": [
"# 9. Test-Time Augmentation (TTA) for Validation\n",
"\n",
"tta_transforms = [\n",
" val_transform,\n",
" transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.RandomHorizontalFlip(p=1.0),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
" ]),\n",
" transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.RandomRotation(10),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
" ]),\n",
" transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.ColorJitter(0.2, 0.2, 0.2, 0.1),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=imagenet_mean, std=imagenet_std)\n",
" ])\n",
"]\n",
"\n",
"def tta_predict(model, img_pil, tta_transforms, device='cuda'):\n",
" model.eval()\n",
" logits = []\n",
" for tform in tta_transforms:\n",
" img = tform(img_pil).unsqueeze(0).to(device)\n",
" with torch.no_grad():\n",
" logit = model(img)\n",
" logits.append(logit)\n",
" avg_logits = torch.stack(logits).mean(0)\n",
" return avg_logits\n",
"\n",
"# Apply TTA to validation set\n",
"tta_val_preds, tta_val_labels = [], []\n",
"for imgs, labels in tqdm(val_loader, desc=\"TTA Validation\"):\n",
" batch_preds = []\n",
" for i in range(imgs.size(0)):\n",
" img_pil = transforms.ToPILImage()(imgs[i].cpu())\n",
" avg_logits = tta_predict(model, img_pil, tta_transforms, device)\n",
" pred = avg_logits.argmax(dim=1).cpu().item()\n",
" batch_preds.append(pred)\n",
" tta_val_preds.extend(batch_preds)\n",
" tta_val_labels.extend(labels.cpu().numpy())\n",
"\n",
"tta_val_preds = np.array(tta_val_preds)\n",
"tta_val_labels = np.array(tta_val_labels)\n",
"\n",
"# Metrics for TTA\n",
"tta_f1_macro = f1_score(tta_val_labels, tta_val_preds, average='macro', zero_division=0)\n",
"tta_acc = accuracy_score(tta_val_labels, tta_val_preds)\n",
"tta_precision = precision_score(tta_val_labels, tta_val_preds, average='macro', zero_division=0)\n",
"tta_recall = recall_score(tta_val_labels, tta_val_preds, average='macro', zero_division=0)\n",
"print(f\"TTA Validation Accuracy: {tta_acc:.4f}\")\n",
"print(f\"TTA Validation F1 (macro): {tta_f1_macro:.4f}\")\n",
"print(f\"TTA Validation Precision (macro): {tta_precision:.4f}\")\n",
"print(f\"TTA Validation Recall (macro): {tta_recall:.4f}\")\n",
"\n",
"# TTA Confusion matrix (optional)\n",
"cm_tta = confusion_matrix(tta_val_labels, tta_val_preds)\n",
"plt.figure(figsize=(18,18))\n",
"sns.heatmap(\n",
" cm_tta,\n",
" cmap=\"Purples\",\n",
" xticklabels=class_names,\n",
" yticklabels=class_names,\n",
" square=True,\n",
" cbar_kws={\"shrink\": 0.5, \"label\": \"Count\"},\n",
" linewidths=.2\n",
")\n",
"plt.title('TTA Confusion Matrix (Validation)', fontsize=20)\n",
"plt.xlabel('Predicted label', fontsize=16)\n",
"plt.ylabel('True label', fontsize=16)\n",
"plt.xticks(fontsize=8, rotation=90)\n",
"plt.yticks(fontsize=8)\n",
"plt.tight_layout()\n",
"plt.savefig('/content/drive/MyDrive/tta_confusion_matrix_beautiful.png', dpi=300)\n",
"plt.show()"
],
"metadata": {
"id": "-59H3ryck4v0"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"10. Extraordinary Grad-CAM++ Overlays (Grid)\n",
"Explanation\n",
"We generate Grad-CAM++ visualizations for a set of sample images.\n",
"Each visualization shows:The input image,The Grad-CAM++ heatmap overlay,The true and predicted class for easy comparison.\n",
"All visualizations are saved both individually and as a large, labeled grid.\n",
"\n",
"\n",
"\n",
"---"
],
"metadata": {
"id": "D_o2DOktmrxg"
}
},
{
"cell_type": "code",
"source": [
"# Grad-CAM++ Explanations: Multi-Image Grid (Fixed for latest grad-cam)\n",
"!pip install -U grad-cam --quiet\n",
"\n",
"from pytorch_grad_cam import GradCAMPlusPlus\n",
"from pytorch_grad_cam.utils.image import show_cam_on_image\n",
"from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget\n",
"\n",
"import os\n",
"\n",
"os.makedirs('/content/drive/MyDrive/gradcam_outputs', exist_ok=True)\n",
"\n",
"# Make sure model is on the right device\n",
"model.eval()\n",
"model.to(device)\n",
"\n",
"# Pick the right target layer for EfficientNetV2 (last block)\n",
"target_layer = model.blocks[-1] if hasattr(model, \"blocks\") else model.layer4[-1]\n",
"\n",
"# No more use_cuda argument—just instantiate\n",
"cam = GradCAMPlusPlus(model=model, target_layers=[target_layer])\n",
"\n",
"num_images = 12\n",
"fig, axes = plt.subplots(3, 4, figsize=(18, 14))\n",
"fig.suptitle('Grad-CAM++ Explanations: True vs. Predicted', fontsize=22, weight='bold')\n",
"\n",
"for idx in range(num_images):\n",
" img_tensor, label = val_dataset[idx]\n",
" img_pil = transforms.ToPILImage()(img_tensor.cpu())\n",
" input_tensor = img_tensor.unsqueeze(0).to(device)\n",
" with torch.no_grad():\n",
" output = model(input_tensor)\n",
" pred = output.argmax(1).item()\n",
" targets = [ClassifierOutputTarget(pred)]\n",
" grayscale_cam = cam(input_tensor=input_tensor, targets=targets)[0]\n",
" image_np = img_tensor.permute(1, 2, 0).cpu().numpy()\n",
" image_np = (image_np * np.array(imagenet_std)) + np.array(imagenet_mean)\n",
" image_np = np.clip(image_np, 0, 1)\n",
" cam_image = show_cam_on_image(image_np, grayscale_cam, use_rgb=True)\n",
"\n",
" # Save each Grad-CAM overlay individually\n",
" overlay_path = f\"/content/drive/MyDrive/gradcam_outputs/val_{idx}_true_{class_names[label]}_pred_{class_names[pred]}.png\"\n",
" plt.imsave(overlay_path, cam_image)\n",
"\n",
" # Add to grid\n",
" ax = axes[idx // 4, idx % 4]\n",
" ax.imshow(cam_image)\n",
" ax.set_title(\n",
" f\"True: {class_names[label][:18]}\\nPred: {class_names[pred][:18]}\",\n",
" fontsize=12,\n",
" color=\"green\" if pred == label else \"red\",\n",
" weight=\"bold\"\n",
" )\n",
" ax.axis('off')\n",
"\n",
"plt.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
"plt.savefig('/content/drive/MyDrive/gradcam_outputs/gradcam_grid.png', dpi=250)\n",
"plt.show()"
],
"metadata": {
"id": "Q27a8RhvwkSp"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"11. Gradio Interactive Demo: Model + Grad-CAM++"
],
"metadata": {
"id": "FwB89-Gsm9mQ"
}
},
{
"cell_type": "code",
"source": [
"# 11. Gradio Interactive Demo: EfficientNetV2 + Grad-CAM++\n",
"\n",
"import gradio as gr\n",
"from PIL import Image as PILImage\n",
"\n",
"def predict_and_explain(img):\n",
" image_pil = img.convert(\"RGB\").resize((224, 224))\n",
" input_tensor = val_transform(image_pil).unsqueeze(0).to(device)\n",
" with torch.no_grad():\n",
" output = model(input_tensor)\n",
" pred_idx = output.argmax().item()\n",
" targets = [ClassifierOutputTarget(pred_idx)]\n",
" grayscale_cam = cam(input_tensor=input_tensor, targets=targets)[0]\n",
" image_np = np.array(image_pil).astype(np.float32) / 255.0\n",
" cam_image = show_cam_on_image(image_np, grayscale_cam, use_rgb=True)\n",
" pred_name = class_names[pred_idx]\n",
" return PILImage.fromarray(cam_image), f\"Prediction: {pred_name} (class index {pred_idx})\"\n",
"\n",
"demo = gr.Interface(\n",
" fn=predict_and_explain,\n",
" inputs=gr.Image(type=\"pil\", label=\"Upload Car Image\"),\n",
" outputs=[gr.Image(label=\"Grad-CAM++ Output\"), gr.Text(label=\"Prediction\")],\n",
" title=\"🚗 TwinCar: Car Make/Model Classifier + Explainability Demo\",\n",
" description=\"Upload a car photo. See the prediction (make/model/year) and a Grad-CAM++ heatmap showing what influenced the model.\",\n",
" allow_flagging='never'\n",
")\n",
"demo.launch(share=True)"
],
"metadata": {
"id": "G6O3sgPdk5x2"
},
"execution_count": null,
"outputs": []
}
]
} |