--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: language_detector results: [] --- # language_detector This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Accuracy: 0.9999 - F1 Macro: 0.9995 - Precision Macro: 0.9999 - Recall Macro: 0.999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:| | 0.0096 | 1.0 | 8750 | 0.0011 | 0.9999 | 0.9995 | 0.9999 | 0.999 | | 0.0 | 2.0 | 17500 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0032 | 3.0 | 26250 | 0.0030 | 0.9997 | 0.9984 | 0.9998 | 0.997 | | 0.0 | 4.0 | 35000 | 0.0013 | 0.9999 | 0.9995 | 0.9999 | 0.999 | | 0.0 | 5.0 | 43750 | 0.0013 | 0.9999 | 0.9995 | 0.9999 | 0.999 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1