--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: language_detector results: [] --- # language_detector This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0157 - Accuracy: 0.9986 - F1 Macro: 0.9985 - Precision Macro: 0.9988 - Recall Macro: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:| | 0.0207 | 1.0 | 3850 | 0.0094 | 0.9989 | 0.9987 | 0.9990 | 0.9985 | | 0.007 | 2.0 | 7700 | 0.0141 | 0.9984 | 0.9982 | 0.9983 | 0.9981 | | 0.0031 | 3.0 | 11550 | 0.0095 | 0.9993 | 0.9992 | 0.9995 | 0.999 | | 0.0083 | 4.0 | 15400 | 0.0061 | 0.9995 | 0.9995 | 0.9997 | 0.9993 | | 0.0013 | 5.0 | 19250 | 0.0157 | 0.9986 | 0.9985 | 0.9988 | 0.9981 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1