--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-large-v3-turbo-Telugu-Version1 results: [] language: - te pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-turbo-Telugu-Version1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8897 - Wer: 103.8462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:---------:|:-----:|:---------------:|:--------:| | 0.0234 | 142.8571 | 2000 | 0.4991 | 98.3516 | | 0.0024 | 285.7143 | 4000 | 0.6494 | 95.6044 | | 0.0008 | 428.5714 | 6000 | 0.7260 | 95.0549 | | 0.0004 | 571.4286 | 8000 | 0.7513 | 94.5055 | | 0.0003 | 714.2857 | 10000 | 0.7775 | 95.0549 | | 0.0002 | 857.1429 | 12000 | 0.8183 | 109.3407 | | 0.0002 | 1000.0 | 14000 | 0.8304 | 92.3077 | | 0.0001 | 1142.8571 | 16000 | 0.8528 | 96.1538 | | 0.0001 | 1285.7143 | 18000 | 0.8839 | 100.0 | | 0.0001 | 1428.5714 | 20000 | 0.8897 | 103.8462 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.1