--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: whisper-large-v3-turbo-Hindi-Version2 results: [] language: - hi pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-turbo-Hindi-Version2 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Wer: 23.1550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.2178 | 6.7797 | 2000 | 0.2245 | 25.6931 | | 0.1841 | 13.5593 | 4000 | 0.2146 | 24.6095 | | 0.1572 | 20.3390 | 6000 | 0.2121 | 23.5845 | | 0.1489 | 27.1186 | 8000 | 0.2120 | 23.9848 | | 0.1315 | 33.8983 | 10000 | 0.2118 | 23.6822 | | 0.1253 | 40.6780 | 12000 | 0.2145 | 22.9793 | | 0.1154 | 47.4576 | 14000 | 0.2154 | 23.1941 | | 0.1151 | 54.2373 | 16000 | 0.2168 | 23.0964 | | 0.1079 | 61.0169 | 18000 | 0.2175 | 23.1550 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.1