--- language: - ko tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:11668 - loss:MultipleNegativesRankingLoss base_model: klue/bert-base widget: - source_sentence: klue-sts-v1_dev_00238 sentences: - 이것은 7월 15일에 열린 주요 국가의 외무 장관들 간의 첫 번째 회담에 이은 것입니다. - policy-rtt - 이는 지난 15일 개최된 제1차 주요국 외교장관간 협의에 뒤이은 것이다. - source_sentence: klue-sts-v1_dev_00135 sentences: - 3000만원 이하 소액대출은 지역신용보증재단 심사를 기업은행에 위탁하기로 했다. - policy-rtt - 3,000만원 미만의 소규모 대출은 기업은행에 의해 국내 신용보증재단을 검토하도록 의뢰될 것입니다. - source_sentence: klue-sts-v1_dev_00227 sentences: - 그 공간은 4인 가족에게는 충분하지 않았습니다. - 공간은 4명의 성인 가족이 사용하기에 부족함이 없었고. - airbnb-rtt - source_sentence: klue-sts-v1_dev_00224 sentences: - 타이페이 메인 역까지 걸어서 10분 정도 걸립니다. - 클락키까지 걸어서 10분 정도 걸려요. - airbnb-sampled - source_sentence: klue-sts-v1_dev_00159 sentences: - 거실옆 작은 방에도 싱글 침대가 두개 있습니다. - 2층에 얇은 벽 하나 사이로 방이 두 개 있습니다. - airbnb-sampled datasets: - klue/klue pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on klue/bert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/bert-base](https://huggingface.co/klue/bert-base) on the [klue](https://huggingface.co/datasets/klue) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [klue/bert-base](https://huggingface.co/klue/bert-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [klue](https://huggingface.co/datasets/klue) - **Language:** ko ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("kgmyh/klue_bert-base_finetuning") # Run inference sentences = [ 'klue-sts-v1_dev_00159', 'airbnb-sampled', '2층에 얇은 벽 하나 사이로 방이 두 개 있습니다.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### klue * Dataset: [klue](https://huggingface.co/datasets/klue) at [349481e](https://huggingface.co/datasets/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c) * Size: 11,668 training samples * Columns: guid, source, sentence1, sentence2, and labels * Approximate statistics based on the first 1000 samples: | | guid | source | sentence1 | sentence2 | labels | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------| | type | string | string | string | string | dict | | details | | | | | | * Samples: | guid | source | sentence1 | sentence2 | labels | |:-------------------------------------|:-----------------------------|:-----------------------------------------------------------|:--------------------------------------------------------|:---------------------------------------------------------------------------------| | klue-sts-v1_train_00000 | airbnb-rtt | 숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다. | 숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다. | {'label': 3.7, 'real-label': 3.714285714285714, 'binary-label': 1} | | klue-sts-v1_train_00001 | policy-sampled | 위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다. | 시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다. | {'label': 0.0, 'real-label': 0.0, 'binary-label': 0} | | klue-sts-v1_train_00002 | paraKQC-sampled | 회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘. | 사람들이 주로 네이버 메일을 쓰는 이유를 알려줘 | {'label': 0.3, 'real-label': 0.3333333333333333, 'binary-label': 0} | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### klue * Dataset: [klue](https://huggingface.co/datasets/klue) at [349481e](https://huggingface.co/datasets/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c) * Size: 519 evaluation samples * Columns: guid, source, sentence1, sentence2, and labels * Approximate statistics based on the first 519 samples: | | guid | source | sentence1 | sentence2 | labels | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------| | type | string | string | string | string | dict | | details | | | | | | * Samples: | guid | source | sentence1 | sentence2 | labels | |:-----------------------------------|:----------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | klue-sts-v1_dev_00000 | airbnb-rtt | 무엇보다도 호스트분들이 너무 친절하셨습니다. | 무엇보다도, 호스트들은 매우 친절했습니다. | {'label': 4.9, 'real-label': 4.857142857142857, 'binary-label': 1} | | klue-sts-v1_dev_00001 | airbnb-sampled | 주요 관광지 모두 걸어서 이동가능합니다. | 위치는 피렌체 중심가까지 걸어서 이동 가능합니다. | {'label': 1.4, 'real-label': 1.428571428571429, 'binary-label': 0} | | klue-sts-v1_dev_00002 | policy-sampled | 학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다. | 영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다. | {'label': 1.3, 'real-label': 1.285714285714286, 'binary-label': 0} | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 64 - `weight_decay`: 0.01 - `num_train_epochs`: 1 - `warmup_steps`: 100 - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:----------:|:-------:|:-------------:|:---------------:| | 0.0137 | 10 | 2.9128 | - | | 0.0274 | 20 | 2.8336 | - | | 0.0411 | 30 | 2.8053 | - | | 0.0548 | 40 | 2.7919 | - | | 0.0685 | 50 | 2.7815 | - | | 0.0822 | 60 | 2.7722 | - | | 0.0959 | 70 | 2.7779 | - | | 0.1096 | 80 | 2.7768 | - | | 0.1233 | 90 | 2.7846 | - | | 0.1370 | 100 | 2.7747 | - | | 0.1507 | 110 | 2.7786 | - | | 0.1644 | 120 | 2.7719 | - | | 0.1781 | 130 | 2.7745 | - | | 0.1918 | 140 | 2.7747 | - | | 0.2055 | 150 | 2.7749 | - | | 0.2192 | 160 | 2.7715 | - | | 0.2329 | 170 | 2.7863 | - | | 0.2466 | 180 | 2.7732 | - | | 0.2603 | 190 | 2.7744 | - | | 0.2740 | 200 | 2.7754 | - | | 0.2877 | 210 | 2.7726 | - | | 0.3014 | 220 | 2.7718 | - | | 0.3151 | 230 | 2.774 | - | | 0.3288 | 240 | 2.7748 | - | | 0.3425 | 250 | 2.7708 | - | | 0.3562 | 260 | 2.7728 | - | | 0.3699 | 270 | 2.7746 | - | | 0.3836 | 280 | 2.7739 | - | | 0.3973 | 290 | 2.7721 | - | | 0.4110 | 300 | 2.7747 | - | | 0.4247 | 310 | 2.7746 | - | | 0.4384 | 320 | 2.7732 | - | | 0.4521 | 330 | 2.7739 | - | | 0.4658 | 340 | 2.7724 | - | | 0.4795 | 350 | 2.7736 | - | | 0.4932 | 360 | 2.7736 | - | | 0.5068 | 370 | 2.7735 | - | | 0.5205 | 380 | 2.7734 | - | | 0.5342 | 390 | 2.7726 | - | | 0.5479 | 400 | 2.7734 | - | | 0.5616 | 410 | 2.7726 | - | | 0.5753 | 420 | 2.7731 | - | | 0.5890 | 430 | 2.7735 | - | | 0.6027 | 440 | 2.7734 | - | | 0.6164 | 450 | 2.7741 | - | | 0.6301 | 460 | 2.7737 | - | | 0.6438 | 470 | 2.7717 | - | | 0.6575 | 480 | 2.7739 | - | | 0.6712 | 490 | 2.7727 | - | | **0.6849** | **500** | **2.7729** | **4.129** | | 0.6986 | 510 | 2.7723 | - | | 0.7123 | 520 | 2.7729 | - | | 0.7260 | 530 | 2.7736 | - | | 0.7397 | 540 | 2.7725 | - | | 0.7534 | 550 | 2.7735 | - | | 0.7671 | 560 | 2.7737 | - | | 0.7808 | 570 | 2.7731 | - | | 0.7945 | 580 | 2.7733 | - | | 0.8082 | 590 | 2.7725 | - | | 0.8219 | 600 | 2.773 | - | | 0.8356 | 610 | 2.7729 | - | | 0.8493 | 620 | 2.7724 | - | | 0.8630 | 630 | 2.7719 | - | | 0.8767 | 640 | 2.7719 | - | | 0.8904 | 650 | 2.7735 | - | | 0.9041 | 660 | 2.7731 | - | | 0.9178 | 670 | 2.7716 | - | | 0.9315 | 680 | 2.7736 | - | | 0.9452 | 690 | 2.7734 | - | | 0.9589 | 700 | 2.7728 | - | | 0.9726 | 710 | 2.7721 | - | | 0.9863 | 720 | 2.7726 | - | | 1.0 | 730 | 2.6339 | - | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.7 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0 - PyTorch: 2.5.1+cpu - Accelerate: 1.1.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```