kevinlu4588
Setting up esd code
9985d49
raw
history blame
21.9 kB
from PIL import Image
from matplotlib import pyplot as plt
import textwrap
import argparse
import torch
import copy
import os
import re
import numpy as np
from diffusers import AutoencoderKL, UNet2DConditionModel
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor
from diffusers.schedulers import EulerAncestralDiscreteScheduler
from eta_diffusers.src.diffusers.schedulers.eta_ddim_scheduler import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
# from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
def show_image_grid(img_files, num_rows=3, num_cols=4, fig_size=(15, 10)):
# Create a grid to display the images
fig, axes = plt.subplots(num_rows, num_cols, figsize=fig_size)
# Plot each image in the grid row-wise
for i, ax in enumerate(axes.flatten()):
img_index = i # row-major order
if img_index < len(img_files):
img = img_files[img_index]
ax.imshow(img)
ax.axis('off') # Turn off axis labels
plt.tight_layout()
plt.show()
# Example usage
# img_files = [image1, image2, image3, ...] # Replace with actual images
# show_image_grid(img_files)
def to_gif(images, path):
images[0].save(path, save_all=True,
append_images=images[1:], loop=0, duration=len(images) * 20)
def figure_to_image(figure):
figure.set_dpi(300)
figure.canvas.draw()
return Image.frombytes('RGB', figure.canvas.get_width_height(), figure.canvas.tostring_rgb())
def image_grid(images, outpath=None, column_titles=None, row_titles=None):
n_rows = len(images)
n_cols = len(images[0])
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols,
figsize=(n_cols, n_rows), squeeze=False)
for row, _images in enumerate(images):
for column, image in enumerate(_images):
ax = axs[row][column]
ax.imshow(image)
if column_titles and row == 0:
ax.set_title(textwrap.fill(
column_titles[column], width=12), fontsize='x-small')
if row_titles and column == 0:
ax.set_ylabel(row_titles[row], rotation=0, fontsize='x-small', labelpad=1.6 * len(row_titles[row]))
ax.set_xticks([])
ax.set_yticks([])
plt.subplots_adjust(wspace=0, hspace=0)
if outpath is not None:
plt.savefig(outpath, bbox_inches='tight', dpi=300)
plt.close()
else:
plt.tight_layout(pad=0)
image = figure_to_image(plt.gcf())
plt.close()
return image
def get_module(module, module_name):
if isinstance(module_name, str):
module_name = module_name.split('.')
if len(module_name) == 0:
return module
else:
module = getattr(module, module_name[0])
return get_module(module, module_name[1:])
def set_module(module, module_name, new_module):
if isinstance(module_name, str):
module_name = module_name.split('.')
if len(module_name) == 1:
return setattr(module, module_name[0], new_module)
else:
module = getattr(module, module_name[0])
return set_module(module, module_name[1:], new_module)
def freeze(module):
for parameter in module.parameters():
parameter.requires_grad = False
def unfreeze(module):
for parameter in module.parameters():
parameter.requires_grad = True
def get_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def get_concat_v(im1, im2):
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (0, im1.height))
return dst
class StableDiffuser(torch.nn.Module):
def __init__(self,
scheduler='DDIM'
):
print('code changed')
super().__init__()
# Load the autoencoder model which will be used to decode the latents into image space.
self.vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="vae")
print(self.vae.config.scaling_factor )
# Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained(
"openai/clip-vit-large-patch14")
self.text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
self.unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="unet")
self.feature_extractor = CLIPFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="feature_extractor")
# self.safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="safety_checker")
if scheduler == 'LMS':
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
elif scheduler == 'DDIM':
self.scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
elif scheduler == 'DDPM':
self.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
self.eval()
def get_noise(self, batch_size, latent_width, latent_height, generator=None):
param = list(self.parameters())[0]
return torch.randn(
(batch_size, self.unet.in_channels, latent_width, latent_height),
generator=generator).type(param.dtype).to(param.device)
def add_noise(self, latents, noise, step):
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]]))
def text_tokenize(self, prompts):
tokens = self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
print("prompts", prompts)
print("tokens", tokens)
return tokens
def text_detokenize(self, tokens):
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1]
def text_encode(self, tokens):
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0]
def decode(self, latents):
print(self.vae.config.scaling_factor)
print(latents)
print(1 / self.vae.config.scaling_factor * latents)
print(self.vae.decode(1 / self.vae.config.scaling_factor * latents))
print(self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample)
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
def encode(self, tensors):
return self.vae.encode(tensors).latent_dist.mode() * 0.18215
def to_image(self, image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
print(image)
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def set_scheduler_timesteps(self, n_steps):
self.scheduler.set_timesteps(n_steps, device=self.unet.device)
def get_initial_latents(self, n_imgs, latent_width, latent_height, n_prompts, generator=None):
noise = self.get_noise(n_imgs, latent_width, latent_height, generator=generator).repeat(n_prompts, 1, 1, 1)
latents = noise * self.scheduler.init_noise_sigma
return latents
def get_noise(self, batch_size, latent_width, latent_height, generator=None):
param = list(self.parameters())[0]
return torch.randn(
(batch_size, self.unet.in_channels, latent_width, latent_height),
generator=generator).type(param.dtype).to(param.device)
def add_noise(self, latents, noise, step):
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]]))
def text_tokenize(self, prompts):
return self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
def text_detokenize(self, tokens):
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1]
def text_encode(self, tokens):
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0]
def decode(self, latents):
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
def encode(self, tensors):
return self.vae.encode(tensors).latent_dist.mode() * 0.18215
def to_image(self, image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def set_scheduler_timesteps(self, n_steps):
self.scheduler.set_timesteps(n_steps, device=self.unet.device)
def get_text_embeddings(self, prompts, n_imgs):
text_tokens = self.text_tokenize(prompts)
text_embeddings = self.text_encode(text_tokens)
unconditional_tokens = self.text_tokenize([""] * len(prompts))
unconditional_embeddings = self.text_encode(unconditional_tokens)
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings]).repeat_interleave(n_imgs, dim=0)
return text_embeddings
def predict_noise(self,
iteration,
latents,
text_embeddings,
guidance_scale=7.5
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latents] * 2)
latents = self.scheduler.scale_model_input(
latents, self.scheduler.timesteps[iteration])
# predict the noise residual
noise_prediction = self.unet(
latents, self.scheduler.timesteps[iteration], encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_prediction_uncond, noise_prediction_text = noise_prediction.chunk(2)
noise_prediction = noise_prediction_uncond + guidance_scale * \
(noise_prediction_text - noise_prediction_uncond)
return noise_prediction
@torch.no_grad()
def inpaint(self, img_tensor, mask_tensor, prompts, n_steps=50, n_imgs=1, show_progress=True, **kwargs):
assert 0 <= n_steps <= 1000
assert len(prompts) == n_imgs, "Number of prompts must match number of images"
self.set_scheduler_timesteps(n_steps)
# latents = self.get_initial_latents(n_imgs, img_size, len(prompts))
latents = self.encode(img_tensor.to(self.vae.device)) # Ensure img_tensor is on the correct device
print("latents size", latents.shape)
# Prepare the mask
masked_latents = latents.clone()
print("masked_latents", masked_latents.shape)
initial_latents = self.get_initial_latents(n_imgs, latents.shape[2], latents.shape[3], len(prompts))
print("initial_latents", initial_latents.shape)
print("mask_tensor", mask_tensor.shape)
print("img_tensor", img_tensor.shape)
masked_latents[mask_tensor == 1] = initial_latents[mask_tensor == 1]
text_embeddings = self.get_text_embeddings(prompts, n_imgs)
latents_steps = self.diffusion(
masked_latents, text_embeddings, end_iteration=n_steps, mask_tensor=mask_tensor, show_progress=show_progress, **kwargs
)
# Clear CUDA cache
torch.cuda.empty_cache()
# Convert final latents to image
inpainted_image_tensor = latents_steps[-1].to(self.unet.device)
inpainted_image = self.to_image(self.decode(inpainted_image_tensor))
return inpainted_image
@torch.no_grad()
def diffusion(self, latents, text_embeddings, end_iteration=1000, start_iteration=0, mask_tensor=None, show_progress=True, **kwargs):
latents_steps = []
iterator = tqdm(range(start_iteration, end_iteration)) if show_progress else range(start_iteration, end_iteration)
for iteration in iterator:
noise_pred = self.predict_noise(iteration, latents, text_embeddings)
# Update latents only where the mask is not applied
latents[mask_tensor == 1] = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents).prev_sample[mask_tensor == 1]
latents_steps.append(latents.clone())
return latents_steps
@torch.no_grad()
def __call__(self,
prompts,
img_size=512,
n_steps=50,
n_imgs=1,
end_iteration=None,
generator=None,
eta=1.0,
variance_scale = 1.0,
**kwargs):
assert 0 <= n_steps <= 1000
if not isinstance(prompts, list):
prompts = [prompts]
self.set_scheduler_timesteps(n_steps)
latents = self.get_initial_latents(n_imgs, img_size, len(prompts), generator=generator)
text_embeddings = self.get_text_embeddings(prompts, n_imgs)
end_iteration = end_iteration or n_steps
latents_steps, trace_steps, noise_preds, output_steps = self.diffusion(latents, text_embeddings, end_iteration=end_iteration, eta=eta, variance_scale=variance_scale, **kwargs)
returned_latents = latents_steps
latents_steps = [self.decode(latents.to(self.unet.device)) for latents in latents_steps]
images_steps = [self.to_image(latents) for latents in latents_steps]
np_latents = np.array([latents.cpu().numpy() for latents in latents_steps])
print("latents_steps shape: ", np_latents.shape)
# for i in range(len(images_steps)):
# self.safety_checker = self.safety_checker.float()
# safety_checker_input = self.feature_extractor(images_steps[i], return_tensors="pt").to(latents_steps[0].device)
# image, has_nsfw_concept = self.safety_checker(
# images=latents_steps[i].float().cpu().numpy(), clip_input=safety_checker_input.pixel_values.float()
# )
# images_steps[i][0] = self.to_image(torch.from_numpy(image))[0]
np_images_steps = np.array(images_steps)
final_steps = list(zip(*images_steps))
# '*' unpacks the images_steps
if trace_steps:
return images_steps, trace_steps
return final_steps, np_images_steps, latents_steps, returned_latents, noise_preds, output_steps
class FineTunedModel(torch.nn.Module):
def __init__(self,
model,
train_method,
):
super().__init__()
self.model = model
self.ft_modules = {}
self.orig_modules = {}
freeze(self.model)
for module_name, module in model.named_modules():
if 'unet' not in module_name:
continue
if module.__class__.__name__ in ["Linear", "Conv2d", "LoRACompatibleLinear", "LoRACompatibleConv"]:
if train_method == 'xattn':
if 'attn2' not in module_name:
continue
elif train_method == 'xattn-strict':
if 'attn2' not in module_name or 'to_q' not in module_name or 'to_k' not in module_name:
continue
elif train_method == 'noxattn':
if 'attn2' in module_name:
continue
elif train_method == 'selfattn':
if 'attn1' not in module_name:
continue
else:
raise NotImplementedError(
f"train_method: {train_method} is not implemented."
)
ft_module = copy.deepcopy(module)
self.orig_modules[module_name] = module
self.ft_modules[module_name] = ft_module
unfreeze(ft_module)
self.ft_modules_list = torch.nn.ModuleList(self.ft_modules.values())
self.orig_modules_list = torch.nn.ModuleList(self.orig_modules.values())
@classmethod
def from_checkpoint(cls, model, checkpoint, train_method):
if isinstance(checkpoint, str):
checkpoint = torch.load(checkpoint)
modules = [f"{key}$" for key in list(checkpoint.keys())]
ftm = FineTunedModel(model, train_method=train_method)
ftm.load_state_dict(checkpoint)
return ftm
def __enter__(self):
for key, ft_module in self.ft_modules.items():
set_module(self.model, key, ft_module)
def __exit__(self, exc_type, exc_value, tb):
for key, module in self.orig_modules.items():
set_module(self.model, key, module)
def parameters(self):
parameters = []
for ft_module in self.ft_modules.values():
parameters.extend(list(ft_module.parameters()))
return parameters
def state_dict(self):
state_dict = {key: module.state_dict() for key, module in self.ft_modules.items()}
return state_dict
def load_state_dict(self, state_dict):
for key, sd in state_dict.items():
self.ft_modules[key].load_state_dict(sd)
def train(erase_concept, erase_from, train_method, iterations, negative_guidance, lr, save_path):
nsteps = 50
diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
diffuser.train()
finetuner = FineTunedModel(diffuser, train_method=train_method)
optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
criteria = torch.nn.MSELoss()
pbar = tqdm(range(iterations))
erase_concept = erase_concept.split(',')
erase_concept = [a.strip() for a in erase_concept]
erase_from = erase_from.split(',')
erase_from = [a.strip() for a in erase_from]
if len(erase_from)!=len(erase_concept):
if len(erase_from) == 1:
c = erase_from[0]
erase_from = [c for _ in erase_concept]
else:
print(erase_from, erase_concept)
raise Exception("Erase from concepts length need to match erase concepts length")
erase_concept_ = []
for e, f in zip(erase_concept, erase_from):
erase_concept_.append([e,f])
erase_concept = erase_concept_
print(erase_concept)
# del diffuser.vae
# del diffuser.text_encoder
# del diffuser.tokenizer
torch.cuda.empty_cache()
for i in pbar:
with torch.no_grad():
index = np.random.choice(len(erase_concept), 1, replace=False)[0]
erase_concept_sampled = erase_concept[index]
neutral_text_embeddings = diffuser.get_text_embeddings([''],n_imgs=1)
positive_text_embeddings = diffuser.get_text_embeddings([erase_concept_sampled[0]],n_imgs=1)
target_text_embeddings = diffuser.get_text_embeddings([erase_concept_sampled[1]],n_imgs=1)
diffuser.set_scheduler_timesteps(nsteps)
optimizer.zero_grad()
iteration = torch.randint(1, nsteps - 1, (1,)).item()
latents = diffuser.get_initial_latents(1, 512, 1)
with finetuner:
latents_steps, _ = diffuser.diffusion(
latents,
positive_text_embeddings,
start_iteration=0,
end_iteration=iteration,
guidance_scale=3,
show_progress=False
)
diffuser.set_scheduler_timesteps(1000)
iteration = int(iteration / nsteps * 1000)
positive_latents = diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=1)
neutral_latents = diffuser.predict_noise(iteration, latents_steps[0], neutral_text_embeddings, guidance_scale=1)
target_latents = diffuser.predict_noise(iteration, latents_steps[0], target_text_embeddings, guidance_scale=1)
if erase_concept_sampled[0] == erase_concept_sampled[1]:
target_latents = neutral_latents.clone().detach()
with finetuner:
negative_latents = diffuser.predict_noise(iteration, latents_steps[0], target_text_embeddings, guidance_scale=1)
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
loss = criteria(negative_latents, target_latents - (negative_guidance*(positive_latents - neutral_latents))) #loss = criteria(e_n, e_0) works the best try 5000 epochs
loss.backward()
optimizer.step()
torch.save(finetuner.state_dict(), save_path)
del diffuser, loss, optimizer, finetuner, negative_latents, neutral_latents, positive_latents, latents_steps, latents
torch.cuda.empty_cache()
if __name__ == '__main__':
model_path='ESD_Models/car_noxattn_200.pt'
state_dict = torch.load(model_path)
diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
finetuner = FineTunedModel(diffuser, train_method='noxattn')
finetuner.load_state_dict(state_dict)
#generation loop
all_images = []
with finetuner:
images = diffuser('image of a car', n_steps=50, generator=torch.manual_seed(2440), eta=1.0)
plt.imshow(images[0][0])