paged-attention / tests /kernels /test_attention.py
danieldk's picture
danieldk HF staff
Rename to paged-attention
3dcba92
raw
history blame
13.4 kB
import random
from typing import List, Optional, Tuple
import paged_attention as ops
import pytest
import torch
from paged_attention.platforms import current_platform
from .allclose_default import get_default_atol, get_default_rtol
from .utils import get_max_shared_memory_bytes, opcheck
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
# There may not be enough gpu memory due to large NUM_BLOCKS.
# Reduce NUM_BLOCKS when it happens.
NUM_BLOCKS = 4321 # Arbitrary values for testing
PARTITION_SIZE = 512
# flshattF and tritonflashattF supported: {torch.float16, torch.bfloat16}
DTYPES = (
[torch.half, torch.bfloat16, torch.float]
if not current_platform.is_rocm()
else [torch.half, torch.bfloat16]
)
NUM_GEN_SEQS = [7] # Arbitrary values for testing
NUM_PREFILL_SEQS = [3] # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)] # Arbitrary values for testing
# This should be sync with get_supported_head_sizes() in
# vllm.attention.ops.paged_attn.PagedAttention
HEAD_SIZES = [32, 64, 80, 96, 112, 120, 128, 192, 256]
BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
KV_CACHE_DTYPE = ["auto", "fp8"]
SEEDS = [0]
CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
def ref_masked_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
if attn_mask is not None:
attn_weights = attn_weights + attn_mask.float()
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.einsum("hqk,khd->qhd", attn_weights, value)
return out
def ref_single_query_cached_kv_attention(
output: torch.Tensor,
query: torch.Tensor,
num_queries_per_kv: int,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
scale: float,
alibi_slopes: Optional[torch.Tensor],
) -> None:
num_query_heads = query.shape[1]
num_kv_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
block_size = value_cache.shape[3]
num_seqs = query.shape[0]
block_tables_lst = block_tables.cpu().tolist()
seq_lens_lst = seq_lens.cpu().tolist()
for i in range(num_seqs):
q = query[i].unsqueeze(0)
block_table = block_tables_lst[i]
seq_len = int(seq_lens_lst[i])
keys_lst: List[torch.Tensor] = []
values_lst: List[torch.Tensor] = []
for j in range(seq_len):
block_number = int(block_table[j // block_size])
block_offset = j % block_size
k = key_cache[block_number, :, :, block_offset, :]
k = k.reshape(num_kv_heads, head_size)
keys_lst.append(k)
v = value_cache[block_number, :, :, block_offset]
values_lst.append(v)
keys = torch.stack(keys_lst, dim=0)
values = torch.stack(values_lst, dim=0)
if num_queries_per_kv > 1:
# Handle MQA and GQA
keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)
alibi_bias = None
if alibi_slopes is not None:
# Create the ALiBi bias used in the paged attention kernel.
position_ids = torch.arange(seq_len).int()
alibi_bias = (position_ids - seq_len + 1).float()
alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(1, 1, -1)
out = ref_masked_attention(q, keys, values, scale, alibi_bias)
out = out.view(num_query_heads, head_size)
output[i].copy_(out, non_blocking=True)
@pytest.mark.parametrize(
"version", ["v1", "v2"] if not current_platform.is_rocm() else ["v1", "v2", "rocm"]
)
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_paged_attention(
kv_cache_factory,
version: str,
num_seqs: int,
num_heads: Tuple[int, int],
head_size: int,
use_alibi: bool,
block_size: int,
dtype: torch.dtype,
kv_cache_dtype: str,
seed: int,
device: str,
) -> None:
if (kv_cache_dtype == "fp8" and head_size % 16) or (
version == "rocm" and head_size not in (64, 128)
):
pytest.skip()
current_platform.seed_everything(seed)
torch.set_default_device(device)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
query = torch.empty(num_seqs, num_query_heads, head_size, dtype=dtype)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
num_queries_per_kv = num_query_heads // num_kv_heads
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads, dtype=torch.float)
seq_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
seq_lens[-1] = MAX_SEQ_LEN
max_seq_len = max(seq_lens)
seq_lens = torch.tensor(seq_lens, dtype=torch.int)
# Create the block tables.
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables_lst: List[List[int]] = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1) for _ in range(max_num_blocks_per_seq)
]
block_tables_lst.append(block_table)
block_tables = torch.tensor(block_tables_lst, dtype=torch.int)
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(
NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
seed,
device,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# Using default kv_scale
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
# Call the paged attention kernel.
output = torch.empty_like(query)
if version == "v1":
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
)
opcheck(
ops.ops.paged_attention_v1,
(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
0,
0,
0,
64,
0,
),
cond=(head_size == HEAD_SIZES[0] and block_size == BLOCK_SIZES[0]),
)
elif version in ("v2", "rocm"):
num_partitions = (max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE
assert PARTITION_SIZE % block_size == 0
num_seqs, num_heads, head_size = output.shape
tmp_output = torch.empty(
size=(num_seqs, num_heads, num_partitions, head_size),
dtype=output.dtype,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, num_partitions),
dtype=torch.float32,
)
max_logits = torch.empty_like(exp_sums)
if version == "v2":
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
)
opcheck(
ops.ops.paged_attention_v2,
(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
0,
0,
0,
64,
0,
),
cond=(head_size == HEAD_SIZES[0] and block_size == BLOCK_SIZES[0]),
)
else:
ops.paged_attention_rocm(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
)
opcheck(
torch.ops._rocm_C.paged_attention,
(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
),
cond=(head_size == HEAD_SIZES[0] and block_size == BLOCK_SIZES[0]),
)
else:
raise AssertionError(f"Unknown version: {version}")
# Run the reference implementation.
if kv_cache_dtype == "fp8":
# Convert cache data back to dtype.
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x)
dequantized_key_cache = torch.empty(
size=key_cache_shape, dtype=dtype, device=device
)
ops.convert_fp8(dequantized_key_cache, key_cache)
key_cache = dequantized_key_cache
value_cache_shape = value_cache.shape
dequantized_value_cache = torch.empty(
size=value_cache_shape, dtype=dtype, device=device
)
ops.convert_fp8(dequantized_value_cache, value_cache)
value_cache = dequantized_value_cache
ref_output = torch.empty_like(query)
ref_single_query_cached_kv_attention(
ref_output,
query,
num_queries_per_kv,
key_cache,
value_cache,
block_tables,
seq_lens,
scale,
alibi_slopes,
)
# NOTE(woosuk): Due to the kernel-level differences in the two
# implementations, there is a small numerical difference in the two
# outputs. Thus, we use a relaxed tolerance for the test.
atol = get_default_atol(output) if current_platform.is_rocm() else 1e-3
rtol = get_default_rtol(output) if current_platform.is_rocm() else 1e-5
# NOTE(zhaoyang): FP8 KV Cache will introduce quantization error,
# so we use a relaxed tolerance for the test.
atol, rtol = 1e-3, 1e-5
if kv_cache_dtype == "fp8":
atol, rtol = 1e-2, 1e-5
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)
def ref_multi_query_kv_attention(
cu_seq_lens: List[int],
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
dtype: torch.dtype,
) -> torch.Tensor:
num_seqs = len(cu_seq_lens) - 1
ref_outputs: List[torch.Tensor] = []
for i in range(num_seqs):
start_idx = cu_seq_lens[i]
end_idx = cu_seq_lens[i + 1]
seq_len = end_idx - start_idx
# Create attention mask.
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype), diagonal=1)
attn_mask = attn_mask * torch.finfo(dtype).min
attn_mask = attn_mask.to(dtype=dtype)
ref_output = ref_masked_attention(
query[start_idx:end_idx],
key[start_idx:end_idx],
value[start_idx:end_idx],
scale,
attn_mask=attn_mask,
)
ref_outputs.append(ref_output)
return torch.cat(ref_outputs, dim=0)