mamba-ssm / selective-scan /selective_scan_bwd_kernel.cuh
danieldk's picture
danieldk HF staff
Import mamba-ssm kernels
23d26f4
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <ATen/cuda/Atomic.cuh> // For atomicAdd on complex
#ifndef USE_ROCM
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_scan.cuh>
#include <cub/block/block_reduce.cuh>
#else
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "selective_scan.h"
#include "selective_scan_common.h"
#include "reverse_scan.cuh"
#include "static_switch.h"
template<typename scalar_t> __device__ __forceinline__ scalar_t conj(scalar_t x);
template<> __device__ __forceinline__ float conj<float>(float x) { return x; }
template<> __device__ __forceinline__ complex_t conj<complex_t>(complex_t x) { return std::conj(x); }
template<int kNThreads_, int kNItems_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
bool kDeltaSoftplus_, bool kHasZ_, typename input_t_, typename weight_t_>
struct Selective_Scan_bwd_kernel_traits {
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kNItems = kNItems_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : constexpr_min(8, kNItems);
static_assert(kNItems % kNElts == 0);
static constexpr int kNLoads = kNItems / kNElts;
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
static constexpr bool kIsEvenLen = kIsEvenLen_;
static constexpr bool kIsVariableB = kIsVariableB_;
static constexpr bool kIsVariableC = kIsVariableC_;
static constexpr bool kDeltaSoftplus = kDeltaSoftplus_;
static constexpr bool kHasZ = kHasZ_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads with float improves occupancy.
// For complex this would lead to massive register spilling, so we keep it at 2.
static constexpr int kMinBlocks = kNThreads == 128 && !kIsComplex ? 3 : 2;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, cub::BLOCK_STORE_WARP_TRANSPOSE>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
using BlockReverseScanT = BlockReverseScan<scan_t, kNThreads>;
using BlockReduceT = cub::BlockReduce<scan_t, kNThreads>;
using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
using BlockReduceComplexT = cub::BlockReduce<complex_t, kNThreads>;
using BlockExchangeT = cub::BlockExchange<float, kNThreads, !kIsComplex ? kNItems : kNItems * 2>;
static constexpr int kSmemIOSize = custom_max({sizeof(typename BlockLoadT::TempStorage),
sizeof(typename BlockLoadVecT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
sizeof(typename BlockStoreT::TempStorage),
sizeof(typename BlockStoreVecT::TempStorage)});
static constexpr int kSmemExchangeSize = (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockExchangeT::TempStorage);
static constexpr int kSmemReduceSize = sizeof(typename BlockReduceT::TempStorage);
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize + kSmemReduceSize + sizeof(typename BlockScanT::TempStorage) + sizeof(typename BlockReverseScanT::TempStorage);
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
void selective_scan_bwd_kernel(SSMParamsBwd params) {
constexpr bool kIsComplex = Ktraits::kIsComplex;
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
constexpr bool kDeltaSoftplus = Ktraits::kDeltaSoftplus;
constexpr bool kHasZ = Ktraits::kHasZ;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNItems = Ktraits::kNItems;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
using scan_t = typename Ktraits::scan_t;
// Shared memory.
extern __shared__ char smem_[];
// cast to lvalue reference of expected type
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_exchange = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
auto& smem_exchange1 = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize + sizeof(typename Ktraits::BlockExchangeT::TempStorage));
auto& smem_reduce = *reinterpret_cast<typename Ktraits::BlockReduceT::TempStorage*>(reinterpret_cast<char *>(&smem_exchange) + Ktraits::kSmemExchangeSize);
auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(&smem_reduce);
auto& smem_reduce_complex = *reinterpret_cast<typename Ktraits::BlockReduceComplexT::TempStorage*>(&smem_reduce);
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(reinterpret_cast<char *>(&smem_reduce) + Ktraits::kSmemReduceSize);
auto& smem_reverse_scan = *reinterpret_cast<typename Ktraits::BlockReverseScanT::TempStorage*>(reinterpret_cast<char *>(&smem_scan) + sizeof(typename Ktraits::BlockScanT::TempStorage));
weight_t *smem_delta_a = reinterpret_cast<weight_t *>(smem_ + Ktraits::kSmemSize);
scan_t *smem_running_postfix = reinterpret_cast<scan_t *>(smem_delta_a + 2 * MAX_DSTATE + kNThreads);
weight_t *smem_da = reinterpret_cast<weight_t *>(smem_running_postfix + MAX_DSTATE);
weight_t *smem_dbc = reinterpret_cast<weight_t *>(smem_da + MAX_DSTATE);
const int batch_id = blockIdx.x;
const int dim_id = blockIdx.y;
const int group_id = dim_id / (params.dim_ngroups_ratio);
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
+ dim_id * params.u_d_stride;
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
+ dim_id * params.delta_d_stride;
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
+ dim_id * params.dout_d_stride;
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * params.A_d_stride;
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * params.B_d_stride;
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
weight_t *dA = reinterpret_cast<weight_t *>(params.dA_ptr) + dim_id * params.dA_d_stride;
weight_t *dB = reinterpret_cast<weight_t *>(params.dB_ptr)
+ (!kIsVariableB ? dim_id * params.dB_d_stride : batch_id * (!kIsComplex ? params.dB_batch_stride : params.dB_batch_stride / 2) + group_id * params.dB_group_stride);
weight_t *dC = reinterpret_cast<weight_t *>(params.dC_ptr)
+ (!kIsVariableC ? dim_id * params.dC_d_stride : batch_id * (!kIsComplex ? params.dC_batch_stride : params.dC_batch_stride / 2) + group_id * params.dC_group_stride);
float *dD = params.dD_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.dD_ptr) + dim_id;
float D_val = params.D_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.D_ptr)[dim_id];
float *ddelta_bias = params.ddelta_bias_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.ddelta_bias_ptr) + dim_id;
float delta_bias = params.delta_bias_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id];
scan_t *x = params.x_ptr == nullptr
? nullptr
: reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id) * (params.n_chunks) * params.dstate;
float dD_val = 0;
float ddelta_bias_val = 0;
constexpr int kChunkSize = kNThreads * kNItems;
u += (params.n_chunks - 1) * kChunkSize;
delta += (params.n_chunks - 1) * kChunkSize;
dout += (params.n_chunks - 1) * kChunkSize;
Bvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
Cvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
for (int chunk = params.n_chunks - 1; chunk >= 0; --chunk) {
input_t u_vals[kNItems];
input_t delta_vals_load[kNItems];
input_t dout_vals_load[kNItems];
__syncthreads();
load_input<Ktraits>(u, u_vals, smem_load, params.seqlen - chunk * kChunkSize);
u -= kChunkSize;
__syncthreads();
load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
// Will reload delta at the same location if kDeltaSoftplus
if constexpr (!kDeltaSoftplus) { delta -= kChunkSize; }
__syncthreads();
load_input<Ktraits>(dout, dout_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
dout -= kChunkSize;
float dout_vals[kNItems], delta_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
dout_vals[i] = float(dout_vals_load[i]);
delta_vals[i] = float(delta_vals_load[i]) + delta_bias;
if constexpr (kDeltaSoftplus) {
delta_vals[i] = delta_vals[i] <= 20.f ? log1pf(expf(delta_vals[i])) : delta_vals[i];
}
}
if constexpr (kHasZ) {
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
+ dim_id * params.z_d_stride + chunk * kChunkSize;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ dim_id * params.out_d_stride + chunk * kChunkSize;
input_t *dz = reinterpret_cast<input_t *>(params.dz_ptr) + batch_id * params.dz_batch_stride
+ dim_id * params.dz_d_stride + chunk * kChunkSize;
input_t z_vals[kNItems], out_vals[kNItems];
__syncthreads();
load_input<Ktraits>(z, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
__syncthreads();
load_input<Ktraits>(out, out_vals, smem_load, params.seqlen - chunk * kChunkSize);
float dz_vals[kNItems], z_silu_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float z_val = z_vals[i];
float z_sigmoid_val = 1.0f / (1.0f + expf(-z_val));
z_silu_vals[i] = z_val * z_sigmoid_val;
dz_vals[i] = dout_vals[i] * float(out_vals[i]) * z_sigmoid_val
* (1.0f + z_val * (1.0f - z_sigmoid_val));
dout_vals[i] *= z_silu_vals[i];
}
__syncthreads();
store_output<Ktraits>(dz, dz_vals, smem_store, params.seqlen - chunk * kChunkSize);
if (params.out_z_ptr != nullptr) { // Recompute and store out_z
float out_z_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) { out_z_vals[i] = float(out_vals[i]) * z_silu_vals[i]; }
// if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
// printf("out_val=%f, z_silu_val = %f, out_z_val = %f\n", float(out_vals[0]), z_silu_vals[0], out_z_vals[0]);
// }
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
+ dim_id * params.out_z_d_stride + chunk * kChunkSize;
__syncthreads();
store_output<Ktraits>(out_z, out_z_vals, smem_store, params.seqlen - chunk * kChunkSize);
}
}
float du_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) { du_vals[i] = D_val * dout_vals[i]; }
#pragma unroll
for (int i = 0; i < kNItems; ++i) { dD_val += dout_vals[i] * float(u_vals[i]); }
float ddelta_vals[kNItems] = {0};
__syncthreads();
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
const weight_t A_val = A[state_idx * params.A_dstate_stride];
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
weight_t A_scaled;
constexpr float kLog2e = M_LOG2E;
if constexpr (!kIsComplex) {
A_scaled = A_val * kLog2e;
} else {
A_scaled = complex_t(A_val.real_ * kLog2e, A_val.imag_);
}
weight_t B_val, C_val;
weight_t B_vals[kNItems], C_vals[kNItems];
if constexpr (!kIsVariableB) {
B_val = B[state_idx * params.B_dstate_stride];
} else {
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
}
if constexpr (!kIsVariableC) {
C_val = C[state_idx * params.C_dstate_stride];
} else {
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
}
// const weight_t A_val = smem_a[state_idx];
scan_t thread_data[kNItems], thread_reverse_data[kNItems];
if constexpr (!kIsComplex) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
const float delta_a_exp = exp2f(delta_vals[i] * A_scaled);
thread_data[i] = make_float2(delta_a_exp, !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
if (i == 0) {
smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
} else {
thread_reverse_data[i - 1].x = delta_a_exp;
}
thread_reverse_data[i].y = dout_vals[i] *
(!kIsVariableC
? (!kIsVariableB ? B_val * C_val : C_val)
: (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
}
__syncthreads();
thread_reverse_data[kNItems - 1].x = threadIdx.x == kNThreads - 1
? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
: smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
// Initialize running total
scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float2(1.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
);
scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float2(1.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
typename Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
);
if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
weight_t dA_val = 0, dBC_val = 0;
weight_t dB_vals[kNItems], dC_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
const float dx = thread_reverse_data[i].y;
const float ddelta_u = !kIsVariableB ? dx : dx * B_vals[i];
du_vals[i] += ddelta_u * delta_vals[i];
const float a = thread_data[i].y - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
ddelta_vals[i] += ddelta_u * float(u_vals[i]) + dx * A_val * a;
dA_val += dx * delta_vals[i] * a;
if constexpr (!kIsVariableB || !kIsVariableC) {
if constexpr (!kIsVariableB) { // dBC_val is dB_val
dBC_val += dout_vals[i] * (!kIsVariableC ? thread_data[i].y : thread_data[i].y * C_vals[i]);
} else { // dBC_val is dC_val
dBC_val += dout_vals[i] * thread_data[i].y;
}
}
if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
if constexpr (kIsVariableC) {
dC_vals[i] = dout_vals[i] * (!kIsVariableB ? thread_data[i].y * B_val : thread_data[i].y);
}
}
// Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
if constexpr (kIsVariableB || kIsVariableC) {
if constexpr (kIsVariableB) {
typename Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals, dB_vals);
}
if constexpr (kIsVariableC) {
auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
typename Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals, dC_vals);
}
const int seqlen_remaining = params.seqlen - chunk * kChunkSize - threadIdx.x;
weight_t *dB_cur = dB + state_idx * params.dB_dstate_stride + chunk * kChunkSize + threadIdx.x;
weight_t *dC_cur = dC + state_idx * params.dC_dstate_stride + chunk * kChunkSize + threadIdx.x;
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
if (i * kNThreads < seqlen_remaining) {
if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals[i]); }
if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals[i]); }
}
}
}
if constexpr (!kIsVariableB || !kIsVariableC) {
float2 dA_dBC_val = make_float2(dA_val, dBC_val);
dA_dBC_val = typename Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
dA_val = dA_dBC_val.x;
if (threadIdx.x == 0) {
smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dA_dBC_val.y : dA_dBC_val.y + smem_dbc[state_idx];
}
} else {
dA_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dA_val);
}
if (threadIdx.x == 0) {
smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
}
} else {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
// Pytorch's implementation of complex exp (which calls thrust) is very slow
complex_t delta_a_exp = cexp2f(delta_vals[i] * A_scaled);
weight_t B_delta_u_val = !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : B_vals[i] * delta_vals[i] * float(u_vals[i]);
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
if (i == 0) {
smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
} else {
thread_reverse_data[i - 1].x = delta_a_exp.real_;
thread_reverse_data[i - 1].y = -delta_a_exp.imag_;
}
complex_t dout_BC = 2 * dout_vals[i]
* conj(!kIsVariableC
? (!kIsVariableB ? B_val * C_val : C_val)
: (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
thread_reverse_data[i].z = dout_BC.real_;
thread_reverse_data[i].w = dout_BC.imag_;
}
__syncthreads();
complex_t delta_a_exp = threadIdx.x == kNThreads - 1
? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
: smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
thread_reverse_data[kNItems - 1].x = delta_a_exp.real_;
thread_reverse_data[kNItems - 1].y = -delta_a_exp.imag_;
// Initialize running total
scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
);
scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
typename Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
);
if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
weight_t dA_val = 0, dBC_val = 0;
weight_t dB_vals[kNItems], dC_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
complex_t x = complex_t(thread_data[i].z, thread_data[i].w);
complex_t dx = complex_t(thread_reverse_data[i].z, thread_reverse_data[i].w);
float ddelta_u = !kIsVariableB ? dx.real_ : (dx * conj(B_vals[i])).real_;
if constexpr (!kIsVariableB || !kIsVariableC) {
if constexpr (!kIsVariableB) { // dBC_val is dB_val
dBC_val += (2 * dout_vals[i]) * conj(!kIsVariableC ? x : x * C_vals[i]);
} else { // dBC_val is dC_val
dBC_val += (2 * dout_vals[i]) * conj(x);
}
}
const complex_t a_conj = conj(x - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]));
du_vals[i] += ddelta_u * delta_vals[i];
ddelta_vals[i] += ddelta_u * float(u_vals[i]) + (dx * conj(A_val) * a_conj).real_;
dA_val += delta_vals[i] * dx * a_conj;
if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
if constexpr (kIsVariableC) {
dC_vals[i] = (2 * dout_vals[i]) * conj(!kIsVariableB ? x * B_val : x);
}
}
// Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
if constexpr (kIsVariableB || kIsVariableC) {
float dB_vals_f[kNItems * 2], dC_vals_f[kNItems * 2];
if constexpr (kIsVariableB) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
dB_vals_f[i * 2] = dB_vals[i].real_;
dB_vals_f[i * 2 + 1] = dB_vals[i].imag_;
}
typename Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals_f, dB_vals_f);
}
if constexpr (kIsVariableC) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
dC_vals_f[i * 2] = dC_vals[i].real_;
dC_vals_f[i * 2 + 1] = dC_vals[i].imag_;
}
auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
typename Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals_f, dC_vals_f);
}
const int seqlen_remaining = (params.seqlen - chunk * kChunkSize) * 2 - threadIdx.x;
float *dB_cur = reinterpret_cast<float *>(dB) + state_idx * params.dB_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
float *dC_cur = reinterpret_cast<float *>(dC) + state_idx * params.dC_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
#pragma unroll
for (int i = 0; i < kNItems * 2; ++i) {
if (i * kNThreads < seqlen_remaining) {
if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals_f[i]); }
if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals_f[i]); }
}
}
}
if constexpr (!kIsVariableB || !kIsVariableC) {
float4 dA_dBC_val = make_float4(dA_val.real_, dA_val.imag_, dBC_val.real_, dBC_val.imag_);
dA_dBC_val = typename Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
dA_val = complex_t(dA_dBC_val.x, dA_dBC_val.y);
dBC_val = complex_t(dA_dBC_val.z, dA_dBC_val.w);
if (threadIdx.x == 0) {
smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dBC_val : dBC_val + smem_dbc[state_idx];
}
} else {
dA_val = typename Ktraits::BlockReduceComplexT(smem_reduce_complex).Sum(dA_val);
}
if (threadIdx.x == 0) {
smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
}
}
}
if constexpr (kDeltaSoftplus) {
__syncthreads();
input_t delta_vals_load[kNItems];
load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
delta -= kChunkSize;
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float delta_val = float(delta_vals_load[i]) + delta_bias;
float delta_val_neg_exp = expf(-delta_val);
ddelta_vals[i] = delta_val <= 20.f
? ddelta_vals[i] / (1.f + delta_val_neg_exp)
: ddelta_vals[i];
}
}
for (int i = 0; i < kNItems; ++i) { ddelta_bias_val += ddelta_vals[i]; }
input_t *du = reinterpret_cast<input_t *>(params.du_ptr) + batch_id * params.du_batch_stride
+ dim_id * params.du_d_stride + chunk * kChunkSize;
input_t *ddelta = reinterpret_cast<input_t *>(params.ddelta_ptr) + batch_id * params.ddelta_batch_stride
+ dim_id * params.ddelta_d_stride + chunk * kChunkSize;
__syncthreads();
store_output<Ktraits>(du, du_vals, smem_store, params.seqlen - chunk * kChunkSize);
__syncthreads();
store_output<Ktraits>(ddelta, ddelta_vals, smem_store, params.seqlen - chunk * kChunkSize);
Bvar -= kChunkSize * (!kIsComplex ? 1 : 2);
Cvar -= kChunkSize * (!kIsComplex ? 1 : 2);
}
if (params.dD_ptr != nullptr) {
dD_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dD_val);
if (threadIdx.x == 0) { gpuAtomicAdd(dD, dD_val); }
}
if (params.ddelta_bias_ptr != nullptr) {
__syncthreads();
ddelta_bias_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(ddelta_bias_val);
if (threadIdx.x == 0) { gpuAtomicAdd(ddelta_bias, ddelta_bias_val); }
}
for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
gpuAtomicAdd(&(dA[state_idx * params.dA_dstate_stride]), smem_da[state_idx]);
weight_t dBC_val;
if (!kIsVariableB || !kIsVariableC) { dBC_val = smem_dbc[state_idx]; }
if constexpr (!kIsVariableB) {
gpuAtomicAdd(&(dB[state_idx * params.dB_dstate_stride]),
!kIsVariableC ? dBC_val * conj(C[state_idx * params.C_dstate_stride]) : dBC_val);
}
if constexpr (!kIsVariableC) {
gpuAtomicAdd(&(dC[state_idx * params.dC_dstate_stride]),
!kIsVariableB ? dBC_val * conj(B[state_idx * params.B_dstate_stride]) : dBC_val);
}
}
}
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_bwd_launch(SSMParamsBwd &params, cudaStream_t stream) {
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
BOOL_SWITCH(params.delta_softplus, kDeltaSoftplus, [&] {
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, kIsEvenLen, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
// using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, true, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
// TODO: check this
constexpr int kSmemSize = Ktraits::kSmemSize + MAX_DSTATE * sizeof(typename Ktraits::scan_t) + (kNThreads + 4 * MAX_DSTATE) * sizeof(typename Ktraits::weight_t);
dim3 grid(params.batch, params.dim);
auto kernel = &selective_scan_bwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
#ifndef USE_ROCM
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
#else
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
std::cerr << "Warning (selective_scan_bwd_kernel): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
#endif
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
});
});
});
}
template<typename input_t, typename weight_t>
void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream) {
#ifndef USE_ROCM
if (params.seqlen <= 128) {
selective_scan_bwd_launch<32, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 256) {
selective_scan_bwd_launch<32, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_bwd_launch<32, 16, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
}
#else
if (params.seqlen <= 256) {
selective_scan_bwd_launch<64, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_bwd_launch<64, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
}
#endif
}