drbh
commited on
Commit
·
ab4cc6a
1
Parent(s):
d774688
fix: revise bindings and wrapper typing
Browse files- flash_attn/flash_api.cpp +78 -63
- torch-ext/torch_binding.cpp +1 -1
- torch-ext/torch_binding.h +103 -6
flash_attn/flash_api.cpp
CHANGED
|
@@ -1476,10 +1476,10 @@ mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_he
|
|
| 1476 |
} // namespace FLASH_NAMESPACE
|
| 1477 |
|
| 1478 |
// NOTE: wrap the namespaced functions so all types are doubles and longs
|
| 1479 |
-
std::vector<
|
| 1480 |
-
mha_fwd(const
|
| 1481 |
-
const
|
| 1482 |
-
const
|
| 1483 |
const c10::optional<torch::Tensor> &out_, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
| 1484 |
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 1485 |
const double p_dropout,
|
|
@@ -1511,17 +1511,17 @@ mha_fwd(const at::Tensor &q, // batch_size x seqle
|
|
| 1511 |
return FLASH_NAMESPACE::mha_fwd(const_cast<at::Tensor &>(q), k, v, out, alibi_slopes, p_dropout_float, softmax_scale_float, is_causal, window_size_left_int, window_size_right_int, softcap_float, return_softmax, gen);
|
| 1512 |
}
|
| 1513 |
|
| 1514 |
-
std::vector<
|
| 1515 |
-
mha_varlen_fwd(
|
| 1516 |
-
const
|
| 1517 |
-
const
|
| 1518 |
-
const
|
| 1519 |
-
const
|
| 1520 |
-
const
|
| 1521 |
-
const
|
| 1522 |
-
const
|
| 1523 |
-
const
|
| 1524 |
-
const
|
| 1525 |
const int64_t max_seqlen_q,
|
| 1526 |
const int64_t max_seqlen_k,
|
| 1527 |
const double p_dropout,
|
|
@@ -1532,7 +1532,8 @@ mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \s
|
|
| 1532 |
const int64_t window_size_right,
|
| 1533 |
const double softcap,
|
| 1534 |
const bool return_softmax,
|
| 1535 |
-
const
|
|
|
|
| 1536 |
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
| 1537 |
// Prepare the optional arguments as non-const references.
|
| 1538 |
std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt;
|
|
@@ -1564,26 +1565,26 @@ mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \s
|
|
| 1564 |
softcap_float, return_softmax, gen);
|
| 1565 |
}
|
| 1566 |
|
| 1567 |
-
std::vector<
|
| 1568 |
-
mha_bwd(const
|
| 1569 |
-
const
|
| 1570 |
-
const
|
| 1571 |
-
const
|
| 1572 |
-
const
|
| 1573 |
-
const
|
| 1574 |
-
const
|
| 1575 |
-
const
|
| 1576 |
-
const
|
| 1577 |
-
const
|
| 1578 |
-
const double p_dropout,
|
| 1579 |
const double softmax_scale,
|
| 1580 |
const bool is_causal,
|
| 1581 |
const int64_t window_size_left,
|
| 1582 |
const int64_t window_size_right,
|
| 1583 |
const double softcap,
|
| 1584 |
const bool deterministic,
|
| 1585 |
-
|
| 1586 |
-
|
| 1587 |
|
| 1588 |
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
| 1589 |
|
|
@@ -1600,6 +1601,13 @@ mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q
|
|
| 1600 |
int window_size_left_int = static_cast<int>(window_size_left);
|
| 1601 |
int window_size_right_int = static_cast<int>(window_size_right);
|
| 1602 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1603 |
return FLASH_NAMESPACE::mha_bwd(
|
| 1604 |
const_cast<at::Tensor &>(dout),
|
| 1605 |
q, k, v, out, softmax_lse,
|
|
@@ -1608,23 +1616,23 @@ mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q
|
|
| 1608 |
is_causal,
|
| 1609 |
window_size_left_int, window_size_right_int,
|
| 1610 |
softcap_float, deterministic,
|
| 1611 |
-
gen,
|
| 1612 |
}
|
| 1613 |
|
| 1614 |
|
| 1615 |
-
std::vector<
|
| 1616 |
-
mha_varlen_bwd(const
|
| 1617 |
-
const
|
| 1618 |
-
const
|
| 1619 |
-
const
|
| 1620 |
-
const
|
| 1621 |
-
const
|
| 1622 |
-
const
|
| 1623 |
-
const
|
| 1624 |
-
const
|
| 1625 |
-
const
|
| 1626 |
-
const
|
| 1627 |
-
const
|
| 1628 |
const int64_t max_seqlen_q,
|
| 1629 |
const int64_t max_seqlen_k,
|
| 1630 |
const double p_dropout,
|
|
@@ -1635,8 +1643,8 @@ mha_varlen_bwd(const at::Tensor &dout, // batch_size x seqlen_q
|
|
| 1635 |
const int64_t window_size_right,
|
| 1636 |
const double softcap,
|
| 1637 |
const bool deterministic,
|
| 1638 |
-
|
| 1639 |
-
|
| 1640 |
|
| 1641 |
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
| 1642 |
|
|
@@ -1655,6 +1663,14 @@ mha_varlen_bwd(const at::Tensor &dout, // batch_size x seqlen_q
|
|
| 1655 |
int window_size_left_int = static_cast<int>(window_size_left);
|
| 1656 |
int window_size_right_int = static_cast<int>(window_size_right);
|
| 1657 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1658 |
return FLASH_NAMESPACE::mha_varlen_bwd(
|
| 1659 |
const_cast<at::Tensor &>(dout),
|
| 1660 |
q, k, v, out, softmax_lse,
|
|
@@ -1666,31 +1682,30 @@ mha_varlen_bwd(const at::Tensor &dout, // batch_size x seqlen_q
|
|
| 1666 |
zero_tensors, is_causal,
|
| 1667 |
window_size_left_int, window_size_right_int,
|
| 1668 |
softcap_float, deterministic,
|
| 1669 |
-
gen,
|
| 1670 |
}
|
| 1671 |
|
| 1672 |
-
std::vector<
|
| 1673 |
-
mha_fwd_kvcache(const
|
| 1674 |
-
const
|
| 1675 |
-
const
|
| 1676 |
-
const c10::optional<torch::Tensor> &k_,
|
| 1677 |
-
const c10::optional<torch::Tensor> &v_,
|
| 1678 |
-
const c10::optional<torch::Tensor> &seqlens_k_,
|
| 1679 |
-
const c10::optional<torch::Tensor> &rotary_cos_,
|
| 1680 |
-
const c10::optional<torch::Tensor> &rotary_sin_,
|
| 1681 |
-
const c10::optional<torch::Tensor> &cache_batch_idx_,
|
| 1682 |
-
const c10::optional<torch::Tensor> &leftpad_k_,
|
| 1683 |
-
const c10::optional<
|
| 1684 |
-
const c10::optional<
|
| 1685 |
-
const c10::optional<
|
| 1686 |
const double softmax_scale,
|
| 1687 |
bool is_causal,
|
| 1688 |
const int64_t window_size_left,
|
| 1689 |
const int64_t window_size_right,
|
| 1690 |
const double softcap,
|
| 1691 |
bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
|
| 1692 |
-
const int64_t num_splits
|
| 1693 |
-
) {
|
| 1694 |
|
| 1695 |
// Prepare the optional arguments as const references where needed
|
| 1696 |
std::optional<const at::Tensor> k = k_.has_value() ? std::optional<const at::Tensor>(k_.value()) : std::nullopt;
|
|
|
|
| 1476 |
} // namespace FLASH_NAMESPACE
|
| 1477 |
|
| 1478 |
// NOTE: wrap the namespaced functions so all types are doubles and longs
|
| 1479 |
+
std::vector<torch::Tensor>
|
| 1480 |
+
mha_fwd(const torch::Tensor &q, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
| 1481 |
+
const torch::Tensor &k, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
| 1482 |
+
const torch::Tensor &v, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
| 1483 |
const c10::optional<torch::Tensor> &out_, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
| 1484 |
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 1485 |
const double p_dropout,
|
|
|
|
| 1511 |
return FLASH_NAMESPACE::mha_fwd(const_cast<at::Tensor &>(q), k, v, out, alibi_slopes, p_dropout_float, softmax_scale_float, is_causal, window_size_left_int, window_size_right_int, softcap_float, return_softmax, gen);
|
| 1512 |
}
|
| 1513 |
|
| 1514 |
+
std::vector<torch::Tensor>
|
| 1515 |
+
mha_varlen_fwd(const torch::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
| 1516 |
+
const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
|
| 1517 |
+
const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
|
| 1518 |
+
const c10::optional<torch::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 1519 |
+
const torch::Tensor &cu_seqlens_q, // b+1
|
| 1520 |
+
const torch::Tensor &cu_seqlens_k, // b+1
|
| 1521 |
+
const c10::optional<torch::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
|
| 1522 |
+
const c10::optional<torch::Tensor> &leftpad_k_, // batch_size
|
| 1523 |
+
const c10::optional<torch::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
| 1524 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
| 1525 |
const int64_t max_seqlen_q,
|
| 1526 |
const int64_t max_seqlen_k,
|
| 1527 |
const double p_dropout,
|
|
|
|
| 1532 |
const int64_t window_size_right,
|
| 1533 |
const double softcap,
|
| 1534 |
const bool return_softmax,
|
| 1535 |
+
const c10::optional<at::Generator> gen_) {
|
| 1536 |
+
|
| 1537 |
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
| 1538 |
// Prepare the optional arguments as non-const references.
|
| 1539 |
std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt;
|
|
|
|
| 1565 |
softcap_float, return_softmax, gen);
|
| 1566 |
}
|
| 1567 |
|
| 1568 |
+
std::vector<torch::Tensor>
|
| 1569 |
+
mha_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|
| 1570 |
+
const torch::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 1571 |
+
const torch::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1572 |
+
const torch::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1573 |
+
const torch::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
|
| 1574 |
+
const torch::Tensor &softmax_lse, // b x h x seqlen_q
|
| 1575 |
+
const c10::optional<torch::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
|
| 1576 |
+
const c10::optional<torch::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1577 |
+
const c10::optional<torch::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1578 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 1579 |
+
const double p_dropout, // probability to drop
|
| 1580 |
const double softmax_scale,
|
| 1581 |
const bool is_causal,
|
| 1582 |
const int64_t window_size_left,
|
| 1583 |
const int64_t window_size_right,
|
| 1584 |
const double softcap,
|
| 1585 |
const bool deterministic,
|
| 1586 |
+
c10::optional<torch::Generator> gen_,
|
| 1587 |
+
const c10::optional<torch::Tensor> &rng_state) {
|
| 1588 |
|
| 1589 |
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
| 1590 |
|
|
|
|
| 1601 |
int window_size_left_int = static_cast<int>(window_size_left);
|
| 1602 |
int window_size_right_int = static_cast<int>(window_size_right);
|
| 1603 |
|
| 1604 |
+
// TODO: avoid copying rng_state if possible
|
| 1605 |
+
// Create a non-const copy of rng_state
|
| 1606 |
+
std::optional<at::Tensor> rng_state_copy;
|
| 1607 |
+
if (rng_state.has_value()) {
|
| 1608 |
+
rng_state_copy = rng_state.value().clone();
|
| 1609 |
+
}
|
| 1610 |
+
|
| 1611 |
return FLASH_NAMESPACE::mha_bwd(
|
| 1612 |
const_cast<at::Tensor &>(dout),
|
| 1613 |
q, k, v, out, softmax_lse,
|
|
|
|
| 1616 |
is_causal,
|
| 1617 |
window_size_left_int, window_size_right_int,
|
| 1618 |
softcap_float, deterministic,
|
| 1619 |
+
gen, rng_state_copy);
|
| 1620 |
}
|
| 1621 |
|
| 1622 |
|
| 1623 |
+
std::vector<torch::Tensor>
|
| 1624 |
+
mha_varlen_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|
| 1625 |
+
const torch::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 1626 |
+
const torch::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1627 |
+
const torch::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1628 |
+
const torch::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
|
| 1629 |
+
const torch::Tensor &softmax_lse, // b x h x seqlen_q
|
| 1630 |
+
const c10::optional<torch::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
|
| 1631 |
+
const c10::optional<torch::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1632 |
+
const c10::optional<torch::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 1633 |
+
const torch::Tensor &cu_seqlens_q, // batch_size + 1
|
| 1634 |
+
const torch::Tensor &cu_seqlens_k, // batch_size + 1
|
| 1635 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
| 1636 |
const int64_t max_seqlen_q,
|
| 1637 |
const int64_t max_seqlen_k,
|
| 1638 |
const double p_dropout,
|
|
|
|
| 1643 |
const int64_t window_size_right,
|
| 1644 |
const double softcap,
|
| 1645 |
const bool deterministic,
|
| 1646 |
+
c10::optional<torch::Generator> gen_,
|
| 1647 |
+
const c10::optional<torch::Tensor> &rng_state) {
|
| 1648 |
|
| 1649 |
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
| 1650 |
|
|
|
|
| 1663 |
int window_size_left_int = static_cast<int>(window_size_left);
|
| 1664 |
int window_size_right_int = static_cast<int>(window_size_right);
|
| 1665 |
|
| 1666 |
+
|
| 1667 |
+
// TODO: avoid copying rng_state if possible
|
| 1668 |
+
// Create a non-const copy of rng_state
|
| 1669 |
+
std::optional<at::Tensor> rng_state_copy;
|
| 1670 |
+
if (rng_state.has_value()) {
|
| 1671 |
+
rng_state_copy = rng_state.value().clone();
|
| 1672 |
+
}
|
| 1673 |
+
|
| 1674 |
return FLASH_NAMESPACE::mha_varlen_bwd(
|
| 1675 |
const_cast<at::Tensor &>(dout),
|
| 1676 |
q, k, v, out, softmax_lse,
|
|
|
|
| 1682 |
zero_tensors, is_causal,
|
| 1683 |
window_size_left_int, window_size_right_int,
|
| 1684 |
softcap_float, deterministic,
|
| 1685 |
+
gen, rng_state_copy);
|
| 1686 |
}
|
| 1687 |
|
| 1688 |
+
std::vector<torch::Tensor>
|
| 1689 |
+
mha_fwd_kvcache(const torch::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 1690 |
+
const torch::Tensor &kcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 1691 |
+
const torch::Tensor &vcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 1692 |
+
const c10::optional<torch::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
|
| 1693 |
+
const c10::optional<torch::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
|
| 1694 |
+
const c10::optional<torch::Tensor> &seqlens_k_, // batch_size
|
| 1695 |
+
const c10::optional<torch::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
|
| 1696 |
+
const c10::optional<torch::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
|
| 1697 |
+
const c10::optional<torch::Tensor> &cache_batch_idx_, // indices to index into the KV cache
|
| 1698 |
+
const c10::optional<torch::Tensor> &leftpad_k_, // batch_size
|
| 1699 |
+
const c10::optional<torch::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
| 1700 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 1701 |
+
const c10::optional<torch::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
|
| 1702 |
const double softmax_scale,
|
| 1703 |
bool is_causal,
|
| 1704 |
const int64_t window_size_left,
|
| 1705 |
const int64_t window_size_right,
|
| 1706 |
const double softcap,
|
| 1707 |
bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
|
| 1708 |
+
const int64_t num_splits) {
|
|
|
|
| 1709 |
|
| 1710 |
// Prepare the optional arguments as const references where needed
|
| 1711 |
std::optional<const at::Tensor> k = k_.has_value() ? std::optional<const at::Tensor>(k_.value()) : std::nullopt;
|
torch-ext/torch_binding.cpp
CHANGED
|
@@ -17,7 +17,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
|
| 17 |
ops.def("mha_fwd(Tensor! q, Tensor! k, Tensor! v, Tensor? out_, Tensor? alibi_slopes_, float p_dropout, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool return_softmax, Generator? gen_) -> Tensor[]");
|
| 18 |
ops.impl("mha_fwd", torch::kCUDA, &mha_fwd);
|
| 19 |
|
| 20 |
-
ops.def("mha_varlen_fwd(Tensor! q, Tensor! k, Tensor! v, Tensor? out_, Tensor cu_seqlens_q, Tensor cu_seqlens_k, int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool return_softmax, Generator? gen_) -> Tensor[]");
|
| 21 |
ops.impl("mha_varlen_fwd", torch::kCUDA, &mha_varlen_fwd);
|
| 22 |
|
| 23 |
ops.def("mha_bwd(Tensor! dout, Tensor! q, Tensor! k, Tensor! v, Tensor! out, Tensor! softmax_lse, Tensor? dq_, Tensor? dk_, Tensor? dv_, Tensor? alibi_slopes_, float p_dropout, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool deterministic, Generator? gen_, Tensor? rng_state) -> Tensor[]");
|
|
|
|
| 17 |
ops.def("mha_fwd(Tensor! q, Tensor! k, Tensor! v, Tensor? out_, Tensor? alibi_slopes_, float p_dropout, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool return_softmax, Generator? gen_) -> Tensor[]");
|
| 18 |
ops.impl("mha_fwd", torch::kCUDA, &mha_fwd);
|
| 19 |
|
| 20 |
+
ops.def("mha_varlen_fwd(Tensor! q, Tensor! k, Tensor! v, Tensor? out_, Tensor cu_seqlens_q, Tensor cu_seqlens_k, Tensor? seqused_k_, Tensor? leftpad_k_, Tensor? block_table_, Tensor? alibi_slopes_, int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, bool is_causal, int window_size_left, int window_size_right, float softcap, bool return_softmax, Generator? gen_) -> Tensor[]");
|
| 21 |
ops.impl("mha_varlen_fwd", torch::kCUDA, &mha_varlen_fwd);
|
| 22 |
|
| 23 |
ops.def("mha_bwd(Tensor! dout, Tensor! q, Tensor! k, Tensor! v, Tensor! out, Tensor! softmax_lse, Tensor? dq_, Tensor? dk_, Tensor? dv_, Tensor? alibi_slopes_, float p_dropout, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool deterministic, Generator? gen_, Tensor? rng_state) -> Tensor[]");
|
torch-ext/torch_binding.h
CHANGED
|
@@ -2,11 +2,11 @@
|
|
| 2 |
|
| 3 |
#include <torch/torch.h>
|
| 4 |
|
| 5 |
-
std::vector<
|
| 6 |
-
mha_fwd(const
|
| 7 |
-
const
|
| 8 |
-
const
|
| 9 |
-
const c10::optional<torch::Tensor> &out_,
|
| 10 |
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 11 |
const double p_dropout,
|
| 12 |
const double softmax_scale,
|
|
@@ -15,4 +15,101 @@ mha_fwd(const at::Tensor &q, // batch_size x seqlen_q x num_heads x roun
|
|
| 15 |
const int64_t window_size_right,
|
| 16 |
const double softcap,
|
| 17 |
const bool return_softmax,
|
| 18 |
-
const c10::optional<at::Generator> gen_);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
#include <torch/torch.h>
|
| 4 |
|
| 5 |
+
std::vector<torch::Tensor>
|
| 6 |
+
mha_fwd(const torch::Tensor &q, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
| 7 |
+
const torch::Tensor &k, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
| 8 |
+
const torch::Tensor &v, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
|
| 9 |
+
const c10::optional<torch::Tensor> &out_, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
|
| 10 |
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 11 |
const double p_dropout,
|
| 12 |
const double softmax_scale,
|
|
|
|
| 15 |
const int64_t window_size_right,
|
| 16 |
const double softcap,
|
| 17 |
const bool return_softmax,
|
| 18 |
+
const c10::optional<at::Generator> gen_);
|
| 19 |
+
|
| 20 |
+
std::vector<torch::Tensor>
|
| 21 |
+
mha_varlen_fwd(
|
| 22 |
+
const torch::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
| 23 |
+
const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
|
| 24 |
+
const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
|
| 25 |
+
const c10::optional<torch::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 26 |
+
const torch::Tensor &cu_seqlens_q, // b+1
|
| 27 |
+
const torch::Tensor &cu_seqlens_k, // b+1
|
| 28 |
+
const c10::optional<torch::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
|
| 29 |
+
const c10::optional<torch::Tensor> &leftpad_k_, // batch_size
|
| 30 |
+
const c10::optional<torch::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
| 31 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
| 32 |
+
const int64_t max_seqlen_q,
|
| 33 |
+
const int64_t max_seqlen_k,
|
| 34 |
+
const double p_dropout,
|
| 35 |
+
const double softmax_scale,
|
| 36 |
+
const bool zero_tensors,
|
| 37 |
+
const bool is_causal,
|
| 38 |
+
const int64_t window_size_left,
|
| 39 |
+
const int64_t window_size_right,
|
| 40 |
+
const double softcap,
|
| 41 |
+
const bool return_softmax,
|
| 42 |
+
const c10::optional<at::Generator> gen_);
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
std::vector<torch::Tensor>
|
| 46 |
+
mha_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|
| 47 |
+
const torch::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 48 |
+
const torch::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
| 49 |
+
const torch::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
| 50 |
+
const torch::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
|
| 51 |
+
const torch::Tensor &softmax_lse, // b x h x seqlen_q
|
| 52 |
+
const c10::optional<torch::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
|
| 53 |
+
const c10::optional<torch::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 54 |
+
const c10::optional<torch::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 55 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 56 |
+
const double p_dropout, // probability to drop
|
| 57 |
+
const double softmax_scale,
|
| 58 |
+
const bool is_causal,
|
| 59 |
+
const int64_t window_size_left,
|
| 60 |
+
const int64_t window_size_right,
|
| 61 |
+
const double softcap,
|
| 62 |
+
const bool deterministic,
|
| 63 |
+
c10::optional<at::Generator> gen_,
|
| 64 |
+
const c10::optional<torch::Tensor> &rng_state);
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
std::vector<torch::Tensor>
|
| 68 |
+
mha_varlen_bwd(
|
| 69 |
+
const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|
| 70 |
+
const torch::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 71 |
+
const torch::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
| 72 |
+
const torch::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
| 73 |
+
const torch::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
|
| 74 |
+
const torch::Tensor &softmax_lse, // b x h x seqlen_q
|
| 75 |
+
const c10::optional<torch::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
|
| 76 |
+
const c10::optional<torch::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 77 |
+
const c10::optional<torch::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 78 |
+
const torch::Tensor &cu_seqlens_q, // batch_size + 1
|
| 79 |
+
const torch::Tensor &cu_seqlens_k, // batch_size + 1
|
| 80 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
| 81 |
+
const int64_t max_seqlen_q,
|
| 82 |
+
const int64_t max_seqlen_k,
|
| 83 |
+
const double p_dropout,
|
| 84 |
+
const double softmax_scale,
|
| 85 |
+
const bool zero_tensors,
|
| 86 |
+
const bool is_causal,
|
| 87 |
+
const int64_t window_size_left,
|
| 88 |
+
const int64_t window_size_right,
|
| 89 |
+
const double softcap,
|
| 90 |
+
const bool deterministic,
|
| 91 |
+
c10::optional<at::Generator> gen_,
|
| 92 |
+
const c10::optional<torch::Tensor> &rng_state);
|
| 93 |
+
|
| 94 |
+
std::vector<torch::Tensor>
|
| 95 |
+
mha_fwd_kvcache(
|
| 96 |
+
const torch::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 97 |
+
const torch::Tensor &kcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 98 |
+
const torch::Tensor &vcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 99 |
+
const c10::optional<torch::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
|
| 100 |
+
const c10::optional<torch::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
|
| 101 |
+
const c10::optional<torch::Tensor> &seqlens_k_, // batch_size
|
| 102 |
+
const c10::optional<torch::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
|
| 103 |
+
const c10::optional<torch::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
|
| 104 |
+
const c10::optional<torch::Tensor> &cache_batch_idx_, // indices to index into the KV cache
|
| 105 |
+
const c10::optional<torch::Tensor> &leftpad_k_, // batch_size
|
| 106 |
+
const c10::optional<torch::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
| 107 |
+
const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 108 |
+
const c10::optional<torch::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
|
| 109 |
+
const double softmax_scale,
|
| 110 |
+
bool is_causal,
|
| 111 |
+
const int64_t window_size_left,
|
| 112 |
+
const int64_t window_size_right,
|
| 113 |
+
const double softcap,
|
| 114 |
+
bool is_rotary_interleaved,
|
| 115 |
+
const int64_t num_splits);
|