Add layers
Browse files- build/torch25-cxx11-cu118-x86_64-linux/activation/__init__.py +14 -9
- build/torch25-cxx11-cu118-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx11-cu121-x86_64-linux/activation/__init__.py +14 -9
- build/torch25-cxx11-cu121-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx11-cu124-x86_64-linux/activation/__init__.py +14 -9
- build/torch25-cxx11-cu124-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py +14 -9
- build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py +14 -9
- build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py +14 -9
- build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx11-cu118-x86_64-linux/activation/__init__.py +14 -9
- build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx11-cu124-x86_64-linux/activation/__init__.py +14 -9
- build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx11-cu126-x86_64-linux/activation/__init__.py +14 -9
- build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx98-cu118-x86_64-linux/activation/__init__.py +14 -9
- build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx98-cu124-x86_64-linux/activation/__init__.py +14 -9
- build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx98-cu126-x86_64-linux/activation/__init__.py +14 -9
- build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py +65 -0
- tests/kernels/test_activation.py +30 -4
- torch-ext/activation/__init__.py +14 -9
- torch-ext/activation/layers.py +65 -0
build/torch25-cxx11-cu118-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch25-cxx11-cu118-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch25-cxx11-cu121-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch25-cxx11-cu121-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch25-cxx11-cu124-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch25-cxx11-cu124-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch26-cxx11-cu118-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch26-cxx11-cu124-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch26-cxx11-cu126-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch26-cxx98-cu118-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch26-cxx98-cu124-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
build/torch26-cxx98-cu126-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|
tests/kernels/test_activation.py
CHANGED
|
@@ -71,28 +71,34 @@ def test_act_and_mul(
|
|
| 71 |
torch_fn = silu_and_mul
|
| 72 |
fn = activation.silu_and_mul
|
| 73 |
op = activation.ops.silu_and_mul
|
|
|
|
| 74 |
elif activation_name == "gelu":
|
| 75 |
torch_fn = lambda x: gelu_and_mul(x, "none")
|
| 76 |
fn = activation.gelu_and_mul
|
| 77 |
op = activation.ops.gelu_and_mul
|
|
|
|
| 78 |
elif activation_name == "gelu_tanh":
|
| 79 |
torch_fn = lambda x: gelu_and_mul(x, "tanh")
|
| 80 |
fn = activation.gelu_tanh_and_mul
|
| 81 |
op = activation.ops.gelu_tanh_and_mul
|
|
|
|
| 82 |
elif activation_name == "fatrelu":
|
| 83 |
threshold = random.uniform(0, 1)
|
| 84 |
torch_fn = lambda x: fatrelu_and_mul(x, threshold)
|
| 85 |
fn = lambda out, x: activation.fatrelu_and_mul(out, x, threshold)
|
| 86 |
op = activation.ops.fatrelu_and_mul
|
|
|
|
| 87 |
|
| 88 |
out_shape = x.shape[:-1] + (x.shape[-1] // 2,)
|
| 89 |
out = torch.empty(out_shape, dtype=x.dtype, device=x.device)
|
| 90 |
out = fn(out, x)
|
|
|
|
| 91 |
ref_out = torch_fn(x)
|
| 92 |
|
| 93 |
# The SiLU, GELU and FatReLU implementations are equivalent to the native
|
| 94 |
# PyTorch implementations, so we can do exact comparison.
|
| 95 |
torch.testing.assert_close(out, ref_out, atol=0.0, rtol=0.0)
|
|
|
|
| 96 |
|
| 97 |
d = x.shape[-1] // 2
|
| 98 |
output_shape = x.shape[:-1] + (d,)
|
|
@@ -106,9 +112,24 @@ def test_act_and_mul(
|
|
| 106 |
@pytest.mark.parametrize(
|
| 107 |
"activation_fns",
|
| 108 |
[
|
| 109 |
-
(
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
],
|
| 113 |
)
|
| 114 |
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@@ -128,12 +149,17 @@ def test_activation(
|
|
| 128 |
torch.manual_seed(seed)
|
| 129 |
torch.set_default_device(device)
|
| 130 |
x = torch.randn(num_tokens, d, dtype=dtype)
|
| 131 |
-
torch_fn, fn, op = activation_fns
|
|
|
|
| 132 |
out = fn(torch.empty_like(x), x)
|
|
|
|
| 133 |
ref_out = torch_fn(x)
|
| 134 |
torch.testing.assert_close(
|
| 135 |
out, ref_out, atol=get_default_atol(out), rtol=get_default_rtol(out)
|
| 136 |
)
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
out = torch.empty_like(x)
|
| 139 |
opcheck(op, (out, x))
|
|
|
|
| 71 |
torch_fn = silu_and_mul
|
| 72 |
fn = activation.silu_and_mul
|
| 73 |
op = activation.ops.silu_and_mul
|
| 74 |
+
layer = activation.layers.SiluAndMul()
|
| 75 |
elif activation_name == "gelu":
|
| 76 |
torch_fn = lambda x: gelu_and_mul(x, "none")
|
| 77 |
fn = activation.gelu_and_mul
|
| 78 |
op = activation.ops.gelu_and_mul
|
| 79 |
+
layer = activation.layers.GeluAndMul()
|
| 80 |
elif activation_name == "gelu_tanh":
|
| 81 |
torch_fn = lambda x: gelu_and_mul(x, "tanh")
|
| 82 |
fn = activation.gelu_tanh_and_mul
|
| 83 |
op = activation.ops.gelu_tanh_and_mul
|
| 84 |
+
layer = activation.layers.GeluTanhAndMul()
|
| 85 |
elif activation_name == "fatrelu":
|
| 86 |
threshold = random.uniform(0, 1)
|
| 87 |
torch_fn = lambda x: fatrelu_and_mul(x, threshold)
|
| 88 |
fn = lambda out, x: activation.fatrelu_and_mul(out, x, threshold)
|
| 89 |
op = activation.ops.fatrelu_and_mul
|
| 90 |
+
layer = activation.layers.FatreluAndMul(threshold)
|
| 91 |
|
| 92 |
out_shape = x.shape[:-1] + (x.shape[-1] // 2,)
|
| 93 |
out = torch.empty(out_shape, dtype=x.dtype, device=x.device)
|
| 94 |
out = fn(out, x)
|
| 95 |
+
mod_out = layer(x)
|
| 96 |
ref_out = torch_fn(x)
|
| 97 |
|
| 98 |
# The SiLU, GELU and FatReLU implementations are equivalent to the native
|
| 99 |
# PyTorch implementations, so we can do exact comparison.
|
| 100 |
torch.testing.assert_close(out, ref_out, atol=0.0, rtol=0.0)
|
| 101 |
+
torch.testing.assert_close(mod_out, ref_out, atol=0.0, rtol=0.0)
|
| 102 |
|
| 103 |
d = x.shape[-1] // 2
|
| 104 |
output_shape = x.shape[:-1] + (d,)
|
|
|
|
| 112 |
@pytest.mark.parametrize(
|
| 113 |
"activation_fns",
|
| 114 |
[
|
| 115 |
+
(
|
| 116 |
+
gelu_fast,
|
| 117 |
+
activation.gelu_fast,
|
| 118 |
+
activation.ops.gelu_fast,
|
| 119 |
+
activation.layers.FastGELU,
|
| 120 |
+
),
|
| 121 |
+
(
|
| 122 |
+
gelu_new,
|
| 123 |
+
activation.gelu_new,
|
| 124 |
+
activation.ops.gelu_new,
|
| 125 |
+
activation.layers.NewGELU,
|
| 126 |
+
),
|
| 127 |
+
(
|
| 128 |
+
gelu_quick,
|
| 129 |
+
activation.gelu_quick,
|
| 130 |
+
activation.ops.gelu_quick,
|
| 131 |
+
activation.layers.QuickGELU,
|
| 132 |
+
),
|
| 133 |
],
|
| 134 |
)
|
| 135 |
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
|
|
| 149 |
torch.manual_seed(seed)
|
| 150 |
torch.set_default_device(device)
|
| 151 |
x = torch.randn(num_tokens, d, dtype=dtype)
|
| 152 |
+
torch_fn, fn, op, cls = activation_fns
|
| 153 |
+
layer = cls()
|
| 154 |
out = fn(torch.empty_like(x), x)
|
| 155 |
+
layer_out = layer(x)
|
| 156 |
ref_out = torch_fn(x)
|
| 157 |
torch.testing.assert_close(
|
| 158 |
out, ref_out, atol=get_default_atol(out), rtol=get_default_rtol(out)
|
| 159 |
)
|
| 160 |
+
torch.testing.assert_close(
|
| 161 |
+
out, layer_out, atol=get_default_atol(out), rtol=get_default_rtol(out)
|
| 162 |
+
)
|
| 163 |
|
| 164 |
out = torch.empty_like(x)
|
| 165 |
opcheck(op, (out, x))
|
torch-ext/activation/__init__.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
except ImportError as e:
|
| 6 |
-
# Fallback for local development.
|
| 7 |
-
try:
|
| 8 |
-
import _activation
|
| 9 |
|
| 10 |
-
|
| 11 |
-
except ImportError:
|
| 12 |
-
raise e
|
| 13 |
|
| 14 |
|
| 15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
@@ -45,3 +38,15 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
| 45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 46 |
ops.gelu_quick(out, x)
|
| 47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from . import layers
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
|
| 38 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 39 |
ops.gelu_quick(out, x)
|
| 40 |
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"silu_and_mul",
|
| 45 |
+
"gelu_and_mul",
|
| 46 |
+
"gelu_tanh_and_mul",
|
| 47 |
+
"fatrelu_and_mul",
|
| 48 |
+
"gelu_fast",
|
| 49 |
+
"gelu_new",
|
| 50 |
+
"gelu_quick",
|
| 51 |
+
"layers",
|
| 52 |
+
]
|
torch-ext/activation/layers.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SiluAndMul(nn.Module):
|
| 8 |
+
def forward(self, x: torch.Tensor):
|
| 9 |
+
d = x.shape[-1] // 2
|
| 10 |
+
output_shape = x.shape[:-1] + (d,)
|
| 11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 12 |
+
ops.silu_and_mul(out, x)
|
| 13 |
+
return out
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GeluAndMul(nn.Module):
|
| 17 |
+
def forward(self, x: torch.Tensor):
|
| 18 |
+
d = x.shape[-1] // 2
|
| 19 |
+
output_shape = x.shape[:-1] + (d,)
|
| 20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 21 |
+
ops.gelu_and_mul(out, x)
|
| 22 |
+
return out
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class GeluTanhAndMul(nn.Module):
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
d = x.shape[-1] // 2
|
| 28 |
+
output_shape = x.shape[:-1] + (d,)
|
| 29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 30 |
+
ops.gelu_tanh_and_mul(out, x)
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FatreluAndMul(nn.Module):
|
| 35 |
+
def __init__(self, threshold: float = 0.0):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.threshold = threshold
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor):
|
| 40 |
+
d = x.shape[-1] // 2
|
| 41 |
+
output_shape = x.shape[:-1] + (d,)
|
| 42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
| 43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FastGELU(nn.Module):
|
| 48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
out = torch.empty_like(x)
|
| 50 |
+
ops.gelu_fast(out, x)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class NewGELU(nn.Module):
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
out = torch.empty_like(x)
|
| 57 |
+
ops.gelu_new(out, x)
|
| 58 |
+
return out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class QuickGELU(nn.Module):
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
out = torch.empty_like(x)
|
| 64 |
+
ops.gelu_quick(out, x)
|
| 65 |
+
return out
|