Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- assets/tokenizer/vocabulary.spm +3 -0
- config.json +24 -0
- metadata.json +9 -0
- model.weights.json +336 -0
- model_00000.weights.h5 +3 -0
- model_00001.weights.h5 +3 -0
- model_00002.weights.h5 +3 -0
- model_00003.weights.h5 +3 -0
- model_00004.weights.h5 +3 -0
- model_00005.weights.h5 +3 -0
- model_00006.weights.h5 +3 -0
- model_00007.weights.h5 +3 -0
- model_00008.weights.h5 +3 -0
- preprocessor.json +43 -0
- task.json +75 -0
- tokenizer.json +22 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/tokenizer/vocabulary.spm filter=lfs diff=lfs merge=lfs -text
|
assets/tokenizer/vocabulary.spm
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"module": "keras_hub.src.models.mixtral.mixtral_backbone",
|
3 |
+
"class_name": "MixtralBackbone",
|
4 |
+
"config": {
|
5 |
+
"name": "mixtral_backbone",
|
6 |
+
"trainable": true,
|
7 |
+
"vocabulary_size": 32000,
|
8 |
+
"num_layers": 32,
|
9 |
+
"num_query_heads": 32,
|
10 |
+
"hidden_dim": 4096,
|
11 |
+
"intermediate_dim": 14336,
|
12 |
+
"num_experts": 8,
|
13 |
+
"top_k": 2,
|
14 |
+
"router_jitter_noise": 0.0,
|
15 |
+
"rope_max_wavelength": 1000000.0,
|
16 |
+
"rope_scaling_factor": 1.0,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"router_aux_loss_coef": 0.02,
|
19 |
+
"sliding_window": null,
|
20 |
+
"layer_norm_epsilon": 1e-05,
|
21 |
+
"dropout": 0
|
22 |
+
},
|
23 |
+
"registered_name": "keras_hub>MixtralBackbone"
|
24 |
+
}
|
metadata.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"keras_version": "3.10.0.dev2025061603",
|
3 |
+
"keras_hub_version": "0.22.0.dev202506160417",
|
4 |
+
"parameter_count": 46702792704,
|
5 |
+
"date_saved": "2025-06-16@22:25:46",
|
6 |
+
"tasks": [
|
7 |
+
"CausalLM"
|
8 |
+
]
|
9 |
+
}
|
model.weights.json
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 93405585408.0
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"/layers/reversible_embedding/vars": [
|
7 |
+
"model_00000.weights.h5"
|
8 |
+
],
|
9 |
+
"/layers/mixtral_transformer_decoder/_feedforward_layernorm/vars": "model_00000.weights.h5",
|
10 |
+
"/layers/mixtral_transformer_decoder/_self_attention_layer/key_dense/vars": "model_00000.weights.h5",
|
11 |
+
"/layers/mixtral_transformer_decoder/_self_attention_layer/output_dense/vars": "model_00000.weights.h5",
|
12 |
+
"/layers/mixtral_transformer_decoder/_self_attention_layer/query_dense/vars": "model_00000.weights.h5",
|
13 |
+
"/layers/mixtral_transformer_decoder/_self_attention_layer/value_dense/vars": "model_00000.weights.h5",
|
14 |
+
"/layers/mixtral_transformer_decoder/_self_attention_layernorm/vars": "model_00000.weights.h5",
|
15 |
+
"/layers/mixtral_transformer_decoder/_sparse_moe_block/expert_bank/vars": [
|
16 |
+
"model_00000.weights.h5"
|
17 |
+
],
|
18 |
+
"/layers/mixtral_transformer_decoder/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00000.weights.h5",
|
19 |
+
"/layers/mixtral_transformer_decoder_1/_feedforward_layernorm/vars": "model_00000.weights.h5",
|
20 |
+
"/layers/mixtral_transformer_decoder_1/_self_attention_layer/key_dense/vars": "model_00000.weights.h5",
|
21 |
+
"/layers/mixtral_transformer_decoder_1/_self_attention_layer/output_dense/vars": "model_00000.weights.h5",
|
22 |
+
"/layers/mixtral_transformer_decoder_1/_self_attention_layer/query_dense/vars": "model_00000.weights.h5",
|
23 |
+
"/layers/mixtral_transformer_decoder_1/_self_attention_layer/value_dense/vars": "model_00000.weights.h5",
|
24 |
+
"/layers/mixtral_transformer_decoder_1/_self_attention_layernorm/vars": "model_00000.weights.h5",
|
25 |
+
"/layers/mixtral_transformer_decoder_1/_sparse_moe_block/expert_bank/vars": [
|
26 |
+
"model_00000.weights.h5"
|
27 |
+
],
|
28 |
+
"/layers/mixtral_transformer_decoder_1/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00000.weights.h5",
|
29 |
+
"/layers/mixtral_transformer_decoder_2/_feedforward_layernorm/vars": "model_00000.weights.h5",
|
30 |
+
"/layers/mixtral_transformer_decoder_2/_self_attention_layer/key_dense/vars": "model_00000.weights.h5",
|
31 |
+
"/layers/mixtral_transformer_decoder_2/_self_attention_layer/output_dense/vars": "model_00000.weights.h5",
|
32 |
+
"/layers/mixtral_transformer_decoder_2/_self_attention_layer/query_dense/vars": "model_00000.weights.h5",
|
33 |
+
"/layers/mixtral_transformer_decoder_2/_self_attention_layer/value_dense/vars": "model_00000.weights.h5",
|
34 |
+
"/layers/mixtral_transformer_decoder_2/_self_attention_layernorm/vars": "model_00000.weights.h5",
|
35 |
+
"/layers/mixtral_transformer_decoder_2/_sparse_moe_block/expert_bank/vars": [
|
36 |
+
"model_00000.weights.h5"
|
37 |
+
],
|
38 |
+
"/layers/mixtral_transformer_decoder_2/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00000.weights.h5",
|
39 |
+
"/layers/mixtral_transformer_decoder_3/_feedforward_layernorm/vars": "model_00000.weights.h5",
|
40 |
+
"/layers/mixtral_transformer_decoder_3/_self_attention_layer/key_dense/vars": "model_00000.weights.h5",
|
41 |
+
"/layers/mixtral_transformer_decoder_3/_self_attention_layer/output_dense/vars": "model_00000.weights.h5",
|
42 |
+
"/layers/mixtral_transformer_decoder_3/_self_attention_layer/query_dense/vars": "model_00000.weights.h5",
|
43 |
+
"/layers/mixtral_transformer_decoder_3/_self_attention_layer/value_dense/vars": "model_00000.weights.h5",
|
44 |
+
"/layers/mixtral_transformer_decoder_3/_self_attention_layernorm/vars": "model_00000.weights.h5",
|
45 |
+
"/layers/mixtral_transformer_decoder_3/_sparse_moe_block/expert_bank/vars": [
|
46 |
+
"model_00000.weights.h5",
|
47 |
+
"model_00001.weights.h5"
|
48 |
+
],
|
49 |
+
"/layers/mixtral_transformer_decoder_3/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00001.weights.h5",
|
50 |
+
"/layers/mixtral_transformer_decoder_4/_feedforward_layernorm/vars": "model_00001.weights.h5",
|
51 |
+
"/layers/mixtral_transformer_decoder_4/_self_attention_layer/key_dense/vars": "model_00001.weights.h5",
|
52 |
+
"/layers/mixtral_transformer_decoder_4/_self_attention_layer/output_dense/vars": "model_00001.weights.h5",
|
53 |
+
"/layers/mixtral_transformer_decoder_4/_self_attention_layer/query_dense/vars": "model_00001.weights.h5",
|
54 |
+
"/layers/mixtral_transformer_decoder_4/_self_attention_layer/value_dense/vars": "model_00001.weights.h5",
|
55 |
+
"/layers/mixtral_transformer_decoder_4/_self_attention_layernorm/vars": "model_00001.weights.h5",
|
56 |
+
"/layers/mixtral_transformer_decoder_4/_sparse_moe_block/expert_bank/vars": [
|
57 |
+
"model_00001.weights.h5"
|
58 |
+
],
|
59 |
+
"/layers/mixtral_transformer_decoder_4/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00001.weights.h5",
|
60 |
+
"/layers/mixtral_transformer_decoder_5/_feedforward_layernorm/vars": "model_00001.weights.h5",
|
61 |
+
"/layers/mixtral_transformer_decoder_5/_self_attention_layer/key_dense/vars": "model_00001.weights.h5",
|
62 |
+
"/layers/mixtral_transformer_decoder_5/_self_attention_layer/output_dense/vars": "model_00001.weights.h5",
|
63 |
+
"/layers/mixtral_transformer_decoder_5/_self_attention_layer/query_dense/vars": "model_00001.weights.h5",
|
64 |
+
"/layers/mixtral_transformer_decoder_5/_self_attention_layer/value_dense/vars": "model_00001.weights.h5",
|
65 |
+
"/layers/mixtral_transformer_decoder_5/_self_attention_layernorm/vars": "model_00001.weights.h5",
|
66 |
+
"/layers/mixtral_transformer_decoder_5/_sparse_moe_block/expert_bank/vars": [
|
67 |
+
"model_00001.weights.h5"
|
68 |
+
],
|
69 |
+
"/layers/mixtral_transformer_decoder_5/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00001.weights.h5",
|
70 |
+
"/layers/mixtral_transformer_decoder_6/_feedforward_layernorm/vars": "model_00001.weights.h5",
|
71 |
+
"/layers/mixtral_transformer_decoder_6/_self_attention_layer/key_dense/vars": "model_00001.weights.h5",
|
72 |
+
"/layers/mixtral_transformer_decoder_6/_self_attention_layer/output_dense/vars": "model_00001.weights.h5",
|
73 |
+
"/layers/mixtral_transformer_decoder_6/_self_attention_layer/query_dense/vars": "model_00001.weights.h5",
|
74 |
+
"/layers/mixtral_transformer_decoder_6/_self_attention_layer/value_dense/vars": "model_00001.weights.h5",
|
75 |
+
"/layers/mixtral_transformer_decoder_6/_self_attention_layernorm/vars": "model_00001.weights.h5",
|
76 |
+
"/layers/mixtral_transformer_decoder_6/_sparse_moe_block/expert_bank/vars": [
|
77 |
+
"model_00001.weights.h5"
|
78 |
+
],
|
79 |
+
"/layers/mixtral_transformer_decoder_6/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00001.weights.h5",
|
80 |
+
"/layers/mixtral_transformer_decoder_7/_feedforward_layernorm/vars": "model_00001.weights.h5",
|
81 |
+
"/layers/mixtral_transformer_decoder_7/_self_attention_layer/key_dense/vars": "model_00001.weights.h5",
|
82 |
+
"/layers/mixtral_transformer_decoder_7/_self_attention_layer/output_dense/vars": "model_00001.weights.h5",
|
83 |
+
"/layers/mixtral_transformer_decoder_7/_self_attention_layer/query_dense/vars": "model_00001.weights.h5",
|
84 |
+
"/layers/mixtral_transformer_decoder_7/_self_attention_layer/value_dense/vars": "model_00001.weights.h5",
|
85 |
+
"/layers/mixtral_transformer_decoder_7/_self_attention_layernorm/vars": "model_00001.weights.h5",
|
86 |
+
"/layers/mixtral_transformer_decoder_7/_sparse_moe_block/expert_bank/vars": [
|
87 |
+
"model_00002.weights.h5"
|
88 |
+
],
|
89 |
+
"/layers/mixtral_transformer_decoder_7/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00002.weights.h5",
|
90 |
+
"/layers/mixtral_transformer_decoder_8/_feedforward_layernorm/vars": "model_00002.weights.h5",
|
91 |
+
"/layers/mixtral_transformer_decoder_8/_self_attention_layer/key_dense/vars": "model_00002.weights.h5",
|
92 |
+
"/layers/mixtral_transformer_decoder_8/_self_attention_layer/output_dense/vars": "model_00002.weights.h5",
|
93 |
+
"/layers/mixtral_transformer_decoder_8/_self_attention_layer/query_dense/vars": "model_00002.weights.h5",
|
94 |
+
"/layers/mixtral_transformer_decoder_8/_self_attention_layer/value_dense/vars": "model_00002.weights.h5",
|
95 |
+
"/layers/mixtral_transformer_decoder_8/_self_attention_layernorm/vars": "model_00002.weights.h5",
|
96 |
+
"/layers/mixtral_transformer_decoder_8/_sparse_moe_block/expert_bank/vars": [
|
97 |
+
"model_00002.weights.h5"
|
98 |
+
],
|
99 |
+
"/layers/mixtral_transformer_decoder_8/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00002.weights.h5",
|
100 |
+
"/layers/mixtral_transformer_decoder_9/_feedforward_layernorm/vars": "model_00002.weights.h5",
|
101 |
+
"/layers/mixtral_transformer_decoder_9/_self_attention_layer/key_dense/vars": "model_00002.weights.h5",
|
102 |
+
"/layers/mixtral_transformer_decoder_9/_self_attention_layer/output_dense/vars": "model_00002.weights.h5",
|
103 |
+
"/layers/mixtral_transformer_decoder_9/_self_attention_layer/query_dense/vars": "model_00002.weights.h5",
|
104 |
+
"/layers/mixtral_transformer_decoder_9/_self_attention_layer/value_dense/vars": "model_00002.weights.h5",
|
105 |
+
"/layers/mixtral_transformer_decoder_9/_self_attention_layernorm/vars": "model_00002.weights.h5",
|
106 |
+
"/layers/mixtral_transformer_decoder_9/_sparse_moe_block/expert_bank/vars": [
|
107 |
+
"model_00002.weights.h5"
|
108 |
+
],
|
109 |
+
"/layers/mixtral_transformer_decoder_9/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00002.weights.h5",
|
110 |
+
"/layers/mixtral_transformer_decoder_10/_feedforward_layernorm/vars": "model_00002.weights.h5",
|
111 |
+
"/layers/mixtral_transformer_decoder_10/_self_attention_layer/key_dense/vars": "model_00002.weights.h5",
|
112 |
+
"/layers/mixtral_transformer_decoder_10/_self_attention_layer/output_dense/vars": "model_00002.weights.h5",
|
113 |
+
"/layers/mixtral_transformer_decoder_10/_self_attention_layer/query_dense/vars": "model_00002.weights.h5",
|
114 |
+
"/layers/mixtral_transformer_decoder_10/_self_attention_layer/value_dense/vars": "model_00002.weights.h5",
|
115 |
+
"/layers/mixtral_transformer_decoder_10/_self_attention_layernorm/vars": "model_00002.weights.h5",
|
116 |
+
"/layers/mixtral_transformer_decoder_10/_sparse_moe_block/expert_bank/vars": [
|
117 |
+
"model_00002.weights.h5",
|
118 |
+
"model_00003.weights.h5"
|
119 |
+
],
|
120 |
+
"/layers/mixtral_transformer_decoder_10/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00003.weights.h5",
|
121 |
+
"/layers/mixtral_transformer_decoder_11/_feedforward_layernorm/vars": "model_00003.weights.h5",
|
122 |
+
"/layers/mixtral_transformer_decoder_11/_self_attention_layer/key_dense/vars": "model_00003.weights.h5",
|
123 |
+
"/layers/mixtral_transformer_decoder_11/_self_attention_layer/output_dense/vars": "model_00003.weights.h5",
|
124 |
+
"/layers/mixtral_transformer_decoder_11/_self_attention_layer/query_dense/vars": "model_00003.weights.h5",
|
125 |
+
"/layers/mixtral_transformer_decoder_11/_self_attention_layer/value_dense/vars": "model_00003.weights.h5",
|
126 |
+
"/layers/mixtral_transformer_decoder_11/_self_attention_layernorm/vars": "model_00003.weights.h5",
|
127 |
+
"/layers/mixtral_transformer_decoder_11/_sparse_moe_block/expert_bank/vars": [
|
128 |
+
"model_00003.weights.h5"
|
129 |
+
],
|
130 |
+
"/layers/mixtral_transformer_decoder_11/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00003.weights.h5",
|
131 |
+
"/layers/mixtral_transformer_decoder_12/_feedforward_layernorm/vars": "model_00003.weights.h5",
|
132 |
+
"/layers/mixtral_transformer_decoder_12/_self_attention_layer/key_dense/vars": "model_00003.weights.h5",
|
133 |
+
"/layers/mixtral_transformer_decoder_12/_self_attention_layer/output_dense/vars": "model_00003.weights.h5",
|
134 |
+
"/layers/mixtral_transformer_decoder_12/_self_attention_layer/query_dense/vars": "model_00003.weights.h5",
|
135 |
+
"/layers/mixtral_transformer_decoder_12/_self_attention_layer/value_dense/vars": "model_00003.weights.h5",
|
136 |
+
"/layers/mixtral_transformer_decoder_12/_self_attention_layernorm/vars": "model_00003.weights.h5",
|
137 |
+
"/layers/mixtral_transformer_decoder_12/_sparse_moe_block/expert_bank/vars": [
|
138 |
+
"model_00003.weights.h5"
|
139 |
+
],
|
140 |
+
"/layers/mixtral_transformer_decoder_12/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00003.weights.h5",
|
141 |
+
"/layers/mixtral_transformer_decoder_13/_feedforward_layernorm/vars": "model_00003.weights.h5",
|
142 |
+
"/layers/mixtral_transformer_decoder_13/_self_attention_layer/key_dense/vars": "model_00003.weights.h5",
|
143 |
+
"/layers/mixtral_transformer_decoder_13/_self_attention_layer/output_dense/vars": "model_00003.weights.h5",
|
144 |
+
"/layers/mixtral_transformer_decoder_13/_self_attention_layer/query_dense/vars": "model_00003.weights.h5",
|
145 |
+
"/layers/mixtral_transformer_decoder_13/_self_attention_layer/value_dense/vars": "model_00003.weights.h5",
|
146 |
+
"/layers/mixtral_transformer_decoder_13/_self_attention_layernorm/vars": "model_00003.weights.h5",
|
147 |
+
"/layers/mixtral_transformer_decoder_13/_sparse_moe_block/expert_bank/vars": [
|
148 |
+
"model_00003.weights.h5"
|
149 |
+
],
|
150 |
+
"/layers/mixtral_transformer_decoder_13/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00003.weights.h5",
|
151 |
+
"/layers/mixtral_transformer_decoder_14/_feedforward_layernorm/vars": "model_00003.weights.h5",
|
152 |
+
"/layers/mixtral_transformer_decoder_14/_self_attention_layer/key_dense/vars": "model_00003.weights.h5",
|
153 |
+
"/layers/mixtral_transformer_decoder_14/_self_attention_layer/output_dense/vars": "model_00003.weights.h5",
|
154 |
+
"/layers/mixtral_transformer_decoder_14/_self_attention_layer/query_dense/vars": "model_00003.weights.h5",
|
155 |
+
"/layers/mixtral_transformer_decoder_14/_self_attention_layer/value_dense/vars": "model_00003.weights.h5",
|
156 |
+
"/layers/mixtral_transformer_decoder_14/_self_attention_layernorm/vars": "model_00003.weights.h5",
|
157 |
+
"/layers/mixtral_transformer_decoder_14/_sparse_moe_block/expert_bank/vars": [
|
158 |
+
"model_00003.weights.h5",
|
159 |
+
"model_00004.weights.h5"
|
160 |
+
],
|
161 |
+
"/layers/mixtral_transformer_decoder_14/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00004.weights.h5",
|
162 |
+
"/layers/mixtral_transformer_decoder_15/_feedforward_layernorm/vars": "model_00004.weights.h5",
|
163 |
+
"/layers/mixtral_transformer_decoder_15/_self_attention_layer/key_dense/vars": "model_00004.weights.h5",
|
164 |
+
"/layers/mixtral_transformer_decoder_15/_self_attention_layer/output_dense/vars": "model_00004.weights.h5",
|
165 |
+
"/layers/mixtral_transformer_decoder_15/_self_attention_layer/query_dense/vars": "model_00004.weights.h5",
|
166 |
+
"/layers/mixtral_transformer_decoder_15/_self_attention_layer/value_dense/vars": "model_00004.weights.h5",
|
167 |
+
"/layers/mixtral_transformer_decoder_15/_self_attention_layernorm/vars": "model_00004.weights.h5",
|
168 |
+
"/layers/mixtral_transformer_decoder_15/_sparse_moe_block/expert_bank/vars": [
|
169 |
+
"model_00004.weights.h5"
|
170 |
+
],
|
171 |
+
"/layers/mixtral_transformer_decoder_15/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00004.weights.h5",
|
172 |
+
"/layers/mixtral_transformer_decoder_16/_feedforward_layernorm/vars": "model_00004.weights.h5",
|
173 |
+
"/layers/mixtral_transformer_decoder_16/_self_attention_layer/key_dense/vars": "model_00004.weights.h5",
|
174 |
+
"/layers/mixtral_transformer_decoder_16/_self_attention_layer/output_dense/vars": "model_00004.weights.h5",
|
175 |
+
"/layers/mixtral_transformer_decoder_16/_self_attention_layer/query_dense/vars": "model_00004.weights.h5",
|
176 |
+
"/layers/mixtral_transformer_decoder_16/_self_attention_layer/value_dense/vars": "model_00004.weights.h5",
|
177 |
+
"/layers/mixtral_transformer_decoder_16/_self_attention_layernorm/vars": "model_00004.weights.h5",
|
178 |
+
"/layers/mixtral_transformer_decoder_16/_sparse_moe_block/expert_bank/vars": [
|
179 |
+
"model_00004.weights.h5"
|
180 |
+
],
|
181 |
+
"/layers/mixtral_transformer_decoder_16/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00004.weights.h5",
|
182 |
+
"/layers/mixtral_transformer_decoder_17/_feedforward_layernorm/vars": "model_00004.weights.h5",
|
183 |
+
"/layers/mixtral_transformer_decoder_17/_self_attention_layer/key_dense/vars": "model_00004.weights.h5",
|
184 |
+
"/layers/mixtral_transformer_decoder_17/_self_attention_layer/output_dense/vars": "model_00004.weights.h5",
|
185 |
+
"/layers/mixtral_transformer_decoder_17/_self_attention_layer/query_dense/vars": "model_00004.weights.h5",
|
186 |
+
"/layers/mixtral_transformer_decoder_17/_self_attention_layer/value_dense/vars": "model_00004.weights.h5",
|
187 |
+
"/layers/mixtral_transformer_decoder_17/_self_attention_layernorm/vars": "model_00004.weights.h5",
|
188 |
+
"/layers/mixtral_transformer_decoder_17/_sparse_moe_block/expert_bank/vars": [
|
189 |
+
"model_00004.weights.h5"
|
190 |
+
],
|
191 |
+
"/layers/mixtral_transformer_decoder_17/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00004.weights.h5",
|
192 |
+
"/layers/mixtral_transformer_decoder_18/_feedforward_layernorm/vars": "model_00004.weights.h5",
|
193 |
+
"/layers/mixtral_transformer_decoder_18/_self_attention_layer/key_dense/vars": "model_00004.weights.h5",
|
194 |
+
"/layers/mixtral_transformer_decoder_18/_self_attention_layer/output_dense/vars": "model_00004.weights.h5",
|
195 |
+
"/layers/mixtral_transformer_decoder_18/_self_attention_layer/query_dense/vars": "model_00004.weights.h5",
|
196 |
+
"/layers/mixtral_transformer_decoder_18/_self_attention_layer/value_dense/vars": "model_00004.weights.h5",
|
197 |
+
"/layers/mixtral_transformer_decoder_18/_self_attention_layernorm/vars": "model_00004.weights.h5",
|
198 |
+
"/layers/mixtral_transformer_decoder_18/_sparse_moe_block/expert_bank/vars": [
|
199 |
+
"model_00005.weights.h5"
|
200 |
+
],
|
201 |
+
"/layers/mixtral_transformer_decoder_18/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00005.weights.h5",
|
202 |
+
"/layers/mixtral_transformer_decoder_19/_feedforward_layernorm/vars": "model_00005.weights.h5",
|
203 |
+
"/layers/mixtral_transformer_decoder_19/_self_attention_layer/key_dense/vars": "model_00005.weights.h5",
|
204 |
+
"/layers/mixtral_transformer_decoder_19/_self_attention_layer/output_dense/vars": "model_00005.weights.h5",
|
205 |
+
"/layers/mixtral_transformer_decoder_19/_self_attention_layer/query_dense/vars": "model_00005.weights.h5",
|
206 |
+
"/layers/mixtral_transformer_decoder_19/_self_attention_layer/value_dense/vars": "model_00005.weights.h5",
|
207 |
+
"/layers/mixtral_transformer_decoder_19/_self_attention_layernorm/vars": "model_00005.weights.h5",
|
208 |
+
"/layers/mixtral_transformer_decoder_19/_sparse_moe_block/expert_bank/vars": [
|
209 |
+
"model_00005.weights.h5"
|
210 |
+
],
|
211 |
+
"/layers/mixtral_transformer_decoder_19/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00005.weights.h5",
|
212 |
+
"/layers/mixtral_transformer_decoder_20/_feedforward_layernorm/vars": "model_00005.weights.h5",
|
213 |
+
"/layers/mixtral_transformer_decoder_20/_self_attention_layer/key_dense/vars": "model_00005.weights.h5",
|
214 |
+
"/layers/mixtral_transformer_decoder_20/_self_attention_layer/output_dense/vars": "model_00005.weights.h5",
|
215 |
+
"/layers/mixtral_transformer_decoder_20/_self_attention_layer/query_dense/vars": "model_00005.weights.h5",
|
216 |
+
"/layers/mixtral_transformer_decoder_20/_self_attention_layer/value_dense/vars": "model_00005.weights.h5",
|
217 |
+
"/layers/mixtral_transformer_decoder_20/_self_attention_layernorm/vars": "model_00005.weights.h5",
|
218 |
+
"/layers/mixtral_transformer_decoder_20/_sparse_moe_block/expert_bank/vars": [
|
219 |
+
"model_00005.weights.h5"
|
220 |
+
],
|
221 |
+
"/layers/mixtral_transformer_decoder_20/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00005.weights.h5",
|
222 |
+
"/layers/mixtral_transformer_decoder_21/_feedforward_layernorm/vars": "model_00005.weights.h5",
|
223 |
+
"/layers/mixtral_transformer_decoder_21/_self_attention_layer/key_dense/vars": "model_00005.weights.h5",
|
224 |
+
"/layers/mixtral_transformer_decoder_21/_self_attention_layer/output_dense/vars": "model_00005.weights.h5",
|
225 |
+
"/layers/mixtral_transformer_decoder_21/_self_attention_layer/query_dense/vars": "model_00005.weights.h5",
|
226 |
+
"/layers/mixtral_transformer_decoder_21/_self_attention_layer/value_dense/vars": "model_00005.weights.h5",
|
227 |
+
"/layers/mixtral_transformer_decoder_21/_self_attention_layernorm/vars": "model_00005.weights.h5",
|
228 |
+
"/layers/mixtral_transformer_decoder_21/_sparse_moe_block/expert_bank/vars": [
|
229 |
+
"model_00005.weights.h5",
|
230 |
+
"model_00006.weights.h5"
|
231 |
+
],
|
232 |
+
"/layers/mixtral_transformer_decoder_21/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00006.weights.h5",
|
233 |
+
"/layers/mixtral_transformer_decoder_22/_feedforward_layernorm/vars": "model_00006.weights.h5",
|
234 |
+
"/layers/mixtral_transformer_decoder_22/_self_attention_layer/key_dense/vars": "model_00006.weights.h5",
|
235 |
+
"/layers/mixtral_transformer_decoder_22/_self_attention_layer/output_dense/vars": "model_00006.weights.h5",
|
236 |
+
"/layers/mixtral_transformer_decoder_22/_self_attention_layer/query_dense/vars": "model_00006.weights.h5",
|
237 |
+
"/layers/mixtral_transformer_decoder_22/_self_attention_layer/value_dense/vars": "model_00006.weights.h5",
|
238 |
+
"/layers/mixtral_transformer_decoder_22/_self_attention_layernorm/vars": "model_00006.weights.h5",
|
239 |
+
"/layers/mixtral_transformer_decoder_22/_sparse_moe_block/expert_bank/vars": [
|
240 |
+
"model_00006.weights.h5"
|
241 |
+
],
|
242 |
+
"/layers/mixtral_transformer_decoder_22/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00006.weights.h5",
|
243 |
+
"/layers/mixtral_transformer_decoder_23/_feedforward_layernorm/vars": "model_00006.weights.h5",
|
244 |
+
"/layers/mixtral_transformer_decoder_23/_self_attention_layer/key_dense/vars": "model_00006.weights.h5",
|
245 |
+
"/layers/mixtral_transformer_decoder_23/_self_attention_layer/output_dense/vars": "model_00006.weights.h5",
|
246 |
+
"/layers/mixtral_transformer_decoder_23/_self_attention_layer/query_dense/vars": "model_00006.weights.h5",
|
247 |
+
"/layers/mixtral_transformer_decoder_23/_self_attention_layer/value_dense/vars": "model_00006.weights.h5",
|
248 |
+
"/layers/mixtral_transformer_decoder_23/_self_attention_layernorm/vars": "model_00006.weights.h5",
|
249 |
+
"/layers/mixtral_transformer_decoder_23/_sparse_moe_block/expert_bank/vars": [
|
250 |
+
"model_00006.weights.h5"
|
251 |
+
],
|
252 |
+
"/layers/mixtral_transformer_decoder_23/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00006.weights.h5",
|
253 |
+
"/layers/mixtral_transformer_decoder_24/_feedforward_layernorm/vars": "model_00006.weights.h5",
|
254 |
+
"/layers/mixtral_transformer_decoder_24/_self_attention_layer/key_dense/vars": "model_00006.weights.h5",
|
255 |
+
"/layers/mixtral_transformer_decoder_24/_self_attention_layer/output_dense/vars": "model_00006.weights.h5",
|
256 |
+
"/layers/mixtral_transformer_decoder_24/_self_attention_layer/query_dense/vars": "model_00006.weights.h5",
|
257 |
+
"/layers/mixtral_transformer_decoder_24/_self_attention_layer/value_dense/vars": "model_00006.weights.h5",
|
258 |
+
"/layers/mixtral_transformer_decoder_24/_self_attention_layernorm/vars": "model_00006.weights.h5",
|
259 |
+
"/layers/mixtral_transformer_decoder_24/_sparse_moe_block/expert_bank/vars": [
|
260 |
+
"model_00006.weights.h5"
|
261 |
+
],
|
262 |
+
"/layers/mixtral_transformer_decoder_24/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00006.weights.h5",
|
263 |
+
"/layers/mixtral_transformer_decoder_25/_feedforward_layernorm/vars": "model_00006.weights.h5",
|
264 |
+
"/layers/mixtral_transformer_decoder_25/_self_attention_layer/key_dense/vars": "model_00006.weights.h5",
|
265 |
+
"/layers/mixtral_transformer_decoder_25/_self_attention_layer/output_dense/vars": "model_00006.weights.h5",
|
266 |
+
"/layers/mixtral_transformer_decoder_25/_self_attention_layer/query_dense/vars": "model_00006.weights.h5",
|
267 |
+
"/layers/mixtral_transformer_decoder_25/_self_attention_layer/value_dense/vars": "model_00006.weights.h5",
|
268 |
+
"/layers/mixtral_transformer_decoder_25/_self_attention_layernorm/vars": "model_00006.weights.h5",
|
269 |
+
"/layers/mixtral_transformer_decoder_25/_sparse_moe_block/expert_bank/vars": [
|
270 |
+
"model_00006.weights.h5",
|
271 |
+
"model_00007.weights.h5"
|
272 |
+
],
|
273 |
+
"/layers/mixtral_transformer_decoder_25/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00007.weights.h5",
|
274 |
+
"/layers/mixtral_transformer_decoder_26/_feedforward_layernorm/vars": "model_00007.weights.h5",
|
275 |
+
"/layers/mixtral_transformer_decoder_26/_self_attention_layer/key_dense/vars": "model_00007.weights.h5",
|
276 |
+
"/layers/mixtral_transformer_decoder_26/_self_attention_layer/output_dense/vars": "model_00007.weights.h5",
|
277 |
+
"/layers/mixtral_transformer_decoder_26/_self_attention_layer/query_dense/vars": "model_00007.weights.h5",
|
278 |
+
"/layers/mixtral_transformer_decoder_26/_self_attention_layer/value_dense/vars": "model_00007.weights.h5",
|
279 |
+
"/layers/mixtral_transformer_decoder_26/_self_attention_layernorm/vars": "model_00007.weights.h5",
|
280 |
+
"/layers/mixtral_transformer_decoder_26/_sparse_moe_block/expert_bank/vars": [
|
281 |
+
"model_00007.weights.h5"
|
282 |
+
],
|
283 |
+
"/layers/mixtral_transformer_decoder_26/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00007.weights.h5",
|
284 |
+
"/layers/mixtral_transformer_decoder_27/_feedforward_layernorm/vars": "model_00007.weights.h5",
|
285 |
+
"/layers/mixtral_transformer_decoder_27/_self_attention_layer/key_dense/vars": "model_00007.weights.h5",
|
286 |
+
"/layers/mixtral_transformer_decoder_27/_self_attention_layer/output_dense/vars": "model_00007.weights.h5",
|
287 |
+
"/layers/mixtral_transformer_decoder_27/_self_attention_layer/query_dense/vars": "model_00007.weights.h5",
|
288 |
+
"/layers/mixtral_transformer_decoder_27/_self_attention_layer/value_dense/vars": "model_00007.weights.h5",
|
289 |
+
"/layers/mixtral_transformer_decoder_27/_self_attention_layernorm/vars": "model_00007.weights.h5",
|
290 |
+
"/layers/mixtral_transformer_decoder_27/_sparse_moe_block/expert_bank/vars": [
|
291 |
+
"model_00007.weights.h5"
|
292 |
+
],
|
293 |
+
"/layers/mixtral_transformer_decoder_27/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00007.weights.h5",
|
294 |
+
"/layers/mixtral_transformer_decoder_28/_feedforward_layernorm/vars": "model_00007.weights.h5",
|
295 |
+
"/layers/mixtral_transformer_decoder_28/_self_attention_layer/key_dense/vars": "model_00007.weights.h5",
|
296 |
+
"/layers/mixtral_transformer_decoder_28/_self_attention_layer/output_dense/vars": "model_00007.weights.h5",
|
297 |
+
"/layers/mixtral_transformer_decoder_28/_self_attention_layer/query_dense/vars": "model_00007.weights.h5",
|
298 |
+
"/layers/mixtral_transformer_decoder_28/_self_attention_layer/value_dense/vars": "model_00007.weights.h5",
|
299 |
+
"/layers/mixtral_transformer_decoder_28/_self_attention_layernorm/vars": "model_00007.weights.h5",
|
300 |
+
"/layers/mixtral_transformer_decoder_28/_sparse_moe_block/expert_bank/vars": [
|
301 |
+
"model_00007.weights.h5"
|
302 |
+
],
|
303 |
+
"/layers/mixtral_transformer_decoder_28/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00007.weights.h5",
|
304 |
+
"/layers/mixtral_transformer_decoder_29/_feedforward_layernorm/vars": "model_00007.weights.h5",
|
305 |
+
"/layers/mixtral_transformer_decoder_29/_self_attention_layer/key_dense/vars": "model_00007.weights.h5",
|
306 |
+
"/layers/mixtral_transformer_decoder_29/_self_attention_layer/output_dense/vars": "model_00007.weights.h5",
|
307 |
+
"/layers/mixtral_transformer_decoder_29/_self_attention_layer/query_dense/vars": "model_00007.weights.h5",
|
308 |
+
"/layers/mixtral_transformer_decoder_29/_self_attention_layer/value_dense/vars": "model_00007.weights.h5",
|
309 |
+
"/layers/mixtral_transformer_decoder_29/_self_attention_layernorm/vars": "model_00007.weights.h5",
|
310 |
+
"/layers/mixtral_transformer_decoder_29/_sparse_moe_block/expert_bank/vars": [
|
311 |
+
"model_00008.weights.h5"
|
312 |
+
],
|
313 |
+
"/layers/mixtral_transformer_decoder_29/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00008.weights.h5",
|
314 |
+
"/layers/mixtral_transformer_decoder_30/_feedforward_layernorm/vars": "model_00008.weights.h5",
|
315 |
+
"/layers/mixtral_transformer_decoder_30/_self_attention_layer/key_dense/vars": "model_00008.weights.h5",
|
316 |
+
"/layers/mixtral_transformer_decoder_30/_self_attention_layer/output_dense/vars": "model_00008.weights.h5",
|
317 |
+
"/layers/mixtral_transformer_decoder_30/_self_attention_layer/query_dense/vars": "model_00008.weights.h5",
|
318 |
+
"/layers/mixtral_transformer_decoder_30/_self_attention_layer/value_dense/vars": "model_00008.weights.h5",
|
319 |
+
"/layers/mixtral_transformer_decoder_30/_self_attention_layernorm/vars": "model_00008.weights.h5",
|
320 |
+
"/layers/mixtral_transformer_decoder_30/_sparse_moe_block/expert_bank/vars": [
|
321 |
+
"model_00008.weights.h5"
|
322 |
+
],
|
323 |
+
"/layers/mixtral_transformer_decoder_30/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00008.weights.h5",
|
324 |
+
"/layers/mixtral_transformer_decoder_31/_feedforward_layernorm/vars": "model_00008.weights.h5",
|
325 |
+
"/layers/mixtral_transformer_decoder_31/_self_attention_layer/key_dense/vars": "model_00008.weights.h5",
|
326 |
+
"/layers/mixtral_transformer_decoder_31/_self_attention_layer/output_dense/vars": "model_00008.weights.h5",
|
327 |
+
"/layers/mixtral_transformer_decoder_31/_self_attention_layer/query_dense/vars": "model_00008.weights.h5",
|
328 |
+
"/layers/mixtral_transformer_decoder_31/_self_attention_layer/value_dense/vars": "model_00008.weights.h5",
|
329 |
+
"/layers/mixtral_transformer_decoder_31/_self_attention_layernorm/vars": "model_00008.weights.h5",
|
330 |
+
"/layers/mixtral_transformer_decoder_31/_sparse_moe_block/expert_bank/vars": [
|
331 |
+
"model_00008.weights.h5"
|
332 |
+
],
|
333 |
+
"/layers/mixtral_transformer_decoder_31/_sparse_moe_block/_sparse_feedforward_gate_dense/vars": "model_00008.weights.h5",
|
334 |
+
"/layers/mixtral_layer_normalization/vars": "model_00008.weights.h5"
|
335 |
+
}
|
336 |
+
}
|
model_00000.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bd781f94920ae078bd6762fbb620d70f12c3e8dbde27fe4bdc6a7ac113fad15
|
3 |
+
size 10255478248
|
model_00001.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:914fe74f45ddc092a46e2d09d069966e2952c2d66d6c8a56d39d9585d4c676a5
|
3 |
+
size 10670779248
|
model_00002.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61cc422ed9127b90f20b4b6008f5e8d19890b022835d277427e6aaa453d989f3
|
3 |
+
size 10586780928
|
model_00003.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95cfc1aaf94aae7dc74c978f28466cdc036126857de4fda26aa0b551a9613af4
|
3 |
+
size 10670779568
|
model_00004.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96940759d70b5d16d6023611ec96c339c0d77be50da001ac776509f0b21d2157
|
3 |
+
size 10670779248
|
model_00005.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fd03008bbae40afbdb55332ebac6bd569cd715fe3e872c7e7e49564bd44e072
|
3 |
+
size 10586780928
|
model_00006.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:021da30ae6c89a9b9eeb433ccae95490609f4056834ada895519abb1a226fd26
|
3 |
+
size 10670779568
|
model_00007.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:220b921c709fbe8ec8c68c5379e3c18ec0b7e2ba0129567478fd1fa466848ace
|
3 |
+
size 10670779248
|
model_00008.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5704809aa3aeb934ffe99f73833a03de47c0952b7b5098dca7f6cbedbbd19c1
|
3 |
+
size 8623809544
|
preprocessor.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"module": "keras_hub.src.models.mixtral.mixtral_causal_lm_preprocessor",
|
3 |
+
"class_name": "MixtralCausalLMPreprocessor",
|
4 |
+
"config": {
|
5 |
+
"name": "mixtral_causal_lm_preprocessor_2",
|
6 |
+
"trainable": true,
|
7 |
+
"dtype": {
|
8 |
+
"module": "keras",
|
9 |
+
"class_name": "DTypePolicy",
|
10 |
+
"config": {
|
11 |
+
"name": "float32"
|
12 |
+
},
|
13 |
+
"registered_name": null
|
14 |
+
},
|
15 |
+
"tokenizer": {
|
16 |
+
"module": "keras_hub.src.models.mixtral.mixtral_tokenizer",
|
17 |
+
"class_name": "MixtralTokenizer",
|
18 |
+
"config": {
|
19 |
+
"name": "mixtral_tokenizer",
|
20 |
+
"trainable": true,
|
21 |
+
"dtype": {
|
22 |
+
"module": "keras",
|
23 |
+
"class_name": "DTypePolicy",
|
24 |
+
"config": {
|
25 |
+
"name": "int32"
|
26 |
+
},
|
27 |
+
"registered_name": null
|
28 |
+
},
|
29 |
+
"config_file": "tokenizer.json",
|
30 |
+
"proto": null,
|
31 |
+
"sequence_length": null,
|
32 |
+
"add_bos": false,
|
33 |
+
"add_eos": false
|
34 |
+
},
|
35 |
+
"registered_name": "keras_hub>MixtralTokenizer"
|
36 |
+
},
|
37 |
+
"config_file": "preprocessor.json",
|
38 |
+
"sequence_length": 1024,
|
39 |
+
"add_start_token": true,
|
40 |
+
"add_end_token": true
|
41 |
+
},
|
42 |
+
"registered_name": "keras_hub>MixtralCausalLMPreprocessor"
|
43 |
+
}
|
task.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"module": "keras_hub.src.models.mixtral.mixtral_causal_lm",
|
3 |
+
"class_name": "MixtralCausalLM",
|
4 |
+
"config": {
|
5 |
+
"backbone": {
|
6 |
+
"module": "keras_hub.src.models.mixtral.mixtral_backbone",
|
7 |
+
"class_name": "MixtralBackbone",
|
8 |
+
"config": {
|
9 |
+
"name": "mixtral_backbone",
|
10 |
+
"trainable": true,
|
11 |
+
"vocabulary_size": 32000,
|
12 |
+
"num_layers": 32,
|
13 |
+
"num_query_heads": 32,
|
14 |
+
"hidden_dim": 4096,
|
15 |
+
"intermediate_dim": 14336,
|
16 |
+
"num_experts": 8,
|
17 |
+
"top_k": 2,
|
18 |
+
"router_jitter_noise": 0.0,
|
19 |
+
"rope_max_wavelength": 1000000.0,
|
20 |
+
"rope_scaling_factor": 1.0,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"router_aux_loss_coef": 0.02,
|
23 |
+
"sliding_window": null,
|
24 |
+
"layer_norm_epsilon": 1e-05,
|
25 |
+
"dropout": 0
|
26 |
+
},
|
27 |
+
"registered_name": "keras_hub>MixtralBackbone"
|
28 |
+
},
|
29 |
+
"preprocessor": {
|
30 |
+
"module": "keras_hub.src.models.mixtral.mixtral_causal_lm_preprocessor",
|
31 |
+
"class_name": "MixtralCausalLMPreprocessor",
|
32 |
+
"config": {
|
33 |
+
"name": "mixtral_causal_lm_preprocessor_2",
|
34 |
+
"trainable": true,
|
35 |
+
"dtype": {
|
36 |
+
"module": "keras",
|
37 |
+
"class_name": "DTypePolicy",
|
38 |
+
"config": {
|
39 |
+
"name": "float32"
|
40 |
+
},
|
41 |
+
"registered_name": null
|
42 |
+
},
|
43 |
+
"tokenizer": {
|
44 |
+
"module": "keras_hub.src.models.mixtral.mixtral_tokenizer",
|
45 |
+
"class_name": "MixtralTokenizer",
|
46 |
+
"config": {
|
47 |
+
"name": "mixtral_tokenizer",
|
48 |
+
"trainable": true,
|
49 |
+
"dtype": {
|
50 |
+
"module": "keras",
|
51 |
+
"class_name": "DTypePolicy",
|
52 |
+
"config": {
|
53 |
+
"name": "int32"
|
54 |
+
},
|
55 |
+
"registered_name": null
|
56 |
+
},
|
57 |
+
"config_file": "tokenizer.json",
|
58 |
+
"proto": null,
|
59 |
+
"sequence_length": null,
|
60 |
+
"add_bos": false,
|
61 |
+
"add_eos": false
|
62 |
+
},
|
63 |
+
"registered_name": "keras_hub>MixtralTokenizer"
|
64 |
+
},
|
65 |
+
"config_file": "preprocessor.json",
|
66 |
+
"sequence_length": 1024,
|
67 |
+
"add_start_token": true,
|
68 |
+
"add_end_token": true
|
69 |
+
},
|
70 |
+
"registered_name": "keras_hub>MixtralCausalLMPreprocessor"
|
71 |
+
},
|
72 |
+
"name": "mixtral_causal_lm"
|
73 |
+
},
|
74 |
+
"registered_name": "keras_hub>MixtralCausalLM"
|
75 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"module": "keras_hub.src.models.mixtral.mixtral_tokenizer",
|
3 |
+
"class_name": "MixtralTokenizer",
|
4 |
+
"config": {
|
5 |
+
"name": "mixtral_tokenizer",
|
6 |
+
"trainable": true,
|
7 |
+
"dtype": {
|
8 |
+
"module": "keras",
|
9 |
+
"class_name": "DTypePolicy",
|
10 |
+
"config": {
|
11 |
+
"name": "int32"
|
12 |
+
},
|
13 |
+
"registered_name": null
|
14 |
+
},
|
15 |
+
"config_file": "tokenizer.json",
|
16 |
+
"proto": null,
|
17 |
+
"sequence_length": null,
|
18 |
+
"add_bos": false,
|
19 |
+
"add_eos": false
|
20 |
+
},
|
21 |
+
"registered_name": "keras_hub>MixtralTokenizer"
|
22 |
+
}
|