Update Example use in README.md (#2)
Browse files- Update Example use in README.md (20aea9480a885ad663ef06ff6470846311a62751)
Co-authored-by: Laxma Reddy Patlolla <[email protected]>
README.md
CHANGED
|
@@ -33,6 +33,30 @@ The following model checkpoints are provided by the Keras team. Full code exampl
|
|
| 33 |
|------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 34 |
| deeplab_v3_plus_resnet50_pascalvoc | 39.1M | DeeplabV3Plus with a ResNet50 v2 backbone. Trained on PascalVOC 2012 Semantic segmentation task, which consists of 20 classes and one background class. This model achieves a final categorical accuracy of 89.34% and mIoU of 0.6391 on evaluation dataset. This preset is only comptabile with Keras 3. |
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
## Model paper
|
| 37 |
|
| 38 |
https://arxiv.org/abs/1802.02611
|
|
|
|
| 33 |
|------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 34 |
| deeplab_v3_plus_resnet50_pascalvoc | 39.1M | DeeplabV3Plus with a ResNet50 v2 backbone. Trained on PascalVOC 2012 Semantic segmentation task, which consists of 20 classes and one background class. This model achieves a final categorical accuracy of 89.34% and mIoU of 0.6391 on evaluation dataset. This preset is only comptabile with Keras 3. |
|
| 35 |
|
| 36 |
+
|
| 37 |
+
## Example Use
|
| 38 |
+
|
| 39 |
+
Load DeepLabv3+ presets a extension of DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries.
|
| 40 |
+
|
| 41 |
+
```
|
| 42 |
+
images = np.ones(shape=(1, 96, 96, 3))
|
| 43 |
+
labels = np.zeros(shape=(1, 96, 96, 2))
|
| 44 |
+
segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
|
| 45 |
+
"hf://keras/deeplab_v3_plus_resnet50_pascalvoc",
|
| 46 |
+
)
|
| 47 |
+
segmenter.predict(images)
|
| 48 |
+
```
|
| 49 |
+
Specify `num_classes` to load randomly initialized segmentation head.
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
|
| 53 |
+
"hf://keras/deeplab_v3_plus_resnet50_pascalvoc",
|
| 54 |
+
num_classes=2,
|
| 55 |
+
)
|
| 56 |
+
segmenter.preprocessor.image_size = (96, 96)
|
| 57 |
+
segmenter.fit(images, labels, epochs=3)
|
| 58 |
+
segmenter.predict(images) # Trained 2 class segmentation.
|
| 59 |
+
```
|
| 60 |
## Model paper
|
| 61 |
|
| 62 |
https://arxiv.org/abs/1802.02611
|