kenrogers commited on
Commit
33c4890
·
verified ·
1 Parent(s): ea93934

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:156
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: '1. What were some of the financial crashes associated with the
13
+ construction of railways in the 1800s?
14
+
15
+ 2. How did the construction of railways in the 1800s impact the environment?'
16
+ sentences:
17
+ - 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
18
+ available from its launch in June. This was a momentus change, because for the
19
+ previous year free users had mostly been restricted to GPT-3.5 level models, meaning
20
+ new users got a very inaccurate mental model of what a capable LLM could actually
21
+ do.
22
+
23
+ That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
24
+ Pro. This $200/month subscription service is the only way to access their most
25
+ capable model, o1 Pro.
26
+
27
+ Since the trick behind the o1 series (and the future models it will undoubtedly
28
+ inspire) is to expend more compute time to get better results, I don’t think those
29
+ days of free access to the best available models are likely to return.'
30
+ - 'An interesting point of comparison here could be the way railways rolled out
31
+ around the world in the 1800s. Constructing these required enormous investments
32
+ and had a massive environmental impact, and many of the lines that were built
33
+ turned out to be unnecessary—sometimes multiple lines from different companies
34
+ serving the exact same routes!
35
+
36
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
37
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
38
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
39
+ environmental damage.
40
+
41
+ The year of slop'
42
+ - 'Those US export regulations on GPUs to China seem to have inspired some very
43
+ effective training optimizations!
44
+
45
+ The environmental impact got better
46
+
47
+ A welcome result of the increased efficiency of the models—both the hosted ones
48
+ and the ones I can run locally—is that the energy usage and environmental impact
49
+ of running a prompt has dropped enormously over the past couple of years.
50
+
51
+ OpenAI themselves are charging 100x less for a prompt compared to the GPT-3 days.
52
+ I have it on good authority that neither Google Gemini nor Amazon Nova (two of
53
+ the least expensive model providers) are running prompts at a loss.'
54
+ - source_sentence: "1. What are AI agents commonly understood to be, according to\
55
+ \ the context provided? \n2. Why does the author believe that gullibility may\
56
+ \ hinder the development of AI agents?"
57
+ sentences:
58
+ - 'So far, I think they’re a net positive. I’ve used them on a personal level to
59
+ improve my productivity (and entertain myself) in all sorts of different ways.
60
+ I think people who learn how to use them effectively can gain a significant boost
61
+ to their quality of life.
62
+
63
+ A lot of people are yet to be sold on their value! Some think their negatives
64
+ outweigh their positives, some think they are all hot air, and some even think
65
+ they represent an existential threat to humanity.
66
+
67
+ They’re actually quite easy to build
68
+
69
+ The most surprising thing we’ve learned about LLMs this year is that they’re actually
70
+ quite easy to build.'
71
+ - 'A lot of people are excited about AI agents—an infuriatingly vague term that
72
+ seems to be converging on “AI systems that can go away and act on your behalf”.
73
+ We’ve been talking about them all year, but I’ve seen few if any examples of them
74
+ running in production, despite lots of exciting prototypes.
75
+
76
+ I think this is because of gullibility.
77
+
78
+ Can we solve this? Honestly, I’m beginning to suspect that you can’t fully solve
79
+ gullibility without achieving AGI. So it may be quite a while before those agent
80
+ dreams can really start to come true!
81
+
82
+ Code may be the best application
83
+
84
+ Over the course of the year, it’s become increasingly clear that writing code
85
+ is one of the things LLMs are most capable of.'
86
+ - 'Intuitively, one would expect that systems this powerful would take millions
87
+ of lines of complex code. Instead, it turns out a few hundred lines of Python
88
+ is genuinely enough to train a basic version!
89
+
90
+ What matters most is the training data. You need a lot of data to make these
91
+ things work, and the quantity and quality of the training data appears to be the
92
+ most important factor in how good the resulting model is.
93
+
94
+ If you can gather the right data, and afford to pay for the GPUs to train it,
95
+ you can build an LLM.'
96
+ - source_sentence: "1. What concerns did @v0's creators have regarding the prompt\
97
+ \ when it was first released? \n2. How did the approach to handling the prompt\
98
+ \ change over time according to the context?"
99
+ sentences:
100
+ - 'The two main categories I see are people who think AI agents are obviously things
101
+ that go and act on your behalf—the travel agent model—and people who think in
102
+ terms of LLMs that have been given access to tools which they can run in a loop
103
+ as part of solving a problem. The term “autonomy” is often thrown into the mix
104
+ too, again without including a clear definition.
105
+
106
+ (I also collected 211 definitions on Twitter a few months ago—here they are in
107
+ Datasette Lite—and had gemini-exp-1206 attempt to summarize them.)
108
+
109
+ Whatever the term may mean, agents still have that feeling of perpetually “coming
110
+ soon”.'
111
+ - 'When @v0 first came out we were paranoid about protecting the prompt with all
112
+ kinds of pre and post processing complexity.
113
+
114
+ We completely pivoted to let it rip. A prompt without the evals, models, and especially
115
+ UX is like getting a broken ASML machine without a manual'
116
+ - 'The environmental impact got much, much worse
117
+
118
+ The much bigger problem here is the enormous competitive buildout of the infrastructure
119
+ that is imagined to be necessary for these models in the future.
120
+
121
+ Companies like Google, Meta, Microsoft and Amazon are all spending billions of
122
+ dollars rolling out new datacenters, with a very material impact on the electricity
123
+ grid and the environment. There’s even talk of spinning up new nuclear power stations,
124
+ but those can take decades.
125
+
126
+ Is this infrastructure necessary? DeepSeek v3’s $6m training cost and the continued
127
+ crash in LLM prices might hint that it’s not. But would you want to be the big
128
+ tech executive that argued NOT to build out this infrastructure only to be proven
129
+ wrong in a few years’ time?'
130
+ - source_sentence: '1. What significant multi-modal models were released by major
131
+ vendors in 2024?
132
+
133
+ 2. Which upgrades were made to the LLM CLI tool in October 2024?'
134
+ sentences:
135
+ - 'The boring yet crucial secret behind good system prompts is test-driven development.
136
+ You don’t write down a system prompt and find ways to test it. You write down
137
+ tests and find a system prompt that passes them.
138
+
139
+
140
+ It’s become abundantly clear over the course of 2024 that writing good automated
141
+ evals for LLM-powered systems is the skill that’s most needed to build useful
142
+ applications on top of these models. If you have a strong eval suite you can adopt
143
+ new models faster, iterate better and build more reliable and useful product features
144
+ than your competition.
145
+
146
+ Vercel’s Malte Ubl:'
147
+ - 'An interesting point of comparison here could be the way railways rolled out
148
+ around the world in the 1800s. Constructing these required enormous investments
149
+ and had a massive environmental impact, and many of the lines that were built
150
+ turned out to be unnecessary—sometimes multiple lines from different companies
151
+ serving the exact same routes!
152
+
153
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
154
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
155
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
156
+ environmental damage.
157
+
158
+ The year of slop'
159
+ - 'In 2024, almost every significant model vendor released multi-modal models. We
160
+ saw the Claude 3 series from Anthropic in March, Gemini 1.5 Pro in April (images,
161
+ audio and video), then September brought Qwen2-VL and Mistral’s Pixtral 12B and
162
+ Meta’s Llama 3.2 11B and 90B vision models. We got audio input and output from
163
+ OpenAI in October, then November saw SmolVLM from Hugging Face and December saw
164
+ image and video models from Amazon Nova.
165
+
166
+ In October I upgraded my LLM CLI tool to support multi-modal models via attachments.
167
+ It now has plugins for a whole collection of different vision models.'
168
+ - source_sentence: '1. What are the hardware requirements mentioned for running a
169
+ model like GPT-4?
170
+
171
+ 2. What does the author attribute the ability to run such models on less powerful
172
+ hardware to?'
173
+ sentences:
174
+ - 'This remains astonishing to me. I thought a model with the capabilities and output
175
+ quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
176
+
177
+ These models take up enough of my 64GB of RAM that I don’t run them often—they
178
+ don’t leave much room for anything else.
179
+
180
+ The fact that they run at all is a testament to the incredible training and inference
181
+ performance gains that we’ve figured out over the past year. It turns out there
182
+ was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
183
+ expect there’s still more to come.'
184
+ - 'Terminology aside, I remain skeptical as to their utility based, once again,
185
+ on the challenge of gullibility. LLMs believe anything you tell them. Any systems
186
+ that attempts to make meaningful decisions on your behalf will run into the same
187
+ roadblock: how good is a travel agent, or a digital assistant, or even a research
188
+ tool if it can’t distinguish truth from fiction?
189
+
190
+ Just the other day Google Search was caught serving up an entirely fake description
191
+ of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
192
+ movie listing from a fan fiction wiki.'
193
+ - 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed
194
+ models currently available, significantly bigger than the largest of Meta’s Llama
195
+ series, Llama 3.1 405B.
196
+
197
+ Benchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot
198
+ Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models.
199
+ This is by far the highest ranking openly licensed model.
200
+
201
+ The really impressive thing about DeepSeek v3 is the training cost. The model
202
+ was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama
203
+ 3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model
204
+ that benchmarks slightly worse.'
205
+ pipeline_tag: sentence-similarity
206
+ library_name: sentence-transformers
207
+ metrics:
208
+ - cosine_accuracy@1
209
+ - cosine_accuracy@3
210
+ - cosine_accuracy@5
211
+ - cosine_accuracy@10
212
+ - cosine_precision@1
213
+ - cosine_precision@3
214
+ - cosine_precision@5
215
+ - cosine_precision@10
216
+ - cosine_recall@1
217
+ - cosine_recall@3
218
+ - cosine_recall@5
219
+ - cosine_recall@10
220
+ - cosine_ndcg@10
221
+ - cosine_mrr@10
222
+ - cosine_map@100
223
+ model-index:
224
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
225
+ results:
226
+ - task:
227
+ type: information-retrieval
228
+ name: Information Retrieval
229
+ dataset:
230
+ name: Unknown
231
+ type: unknown
232
+ metrics:
233
+ - type: cosine_accuracy@1
234
+ value: 0.9583333333333334
235
+ name: Cosine Accuracy@1
236
+ - type: cosine_accuracy@3
237
+ value: 1.0
238
+ name: Cosine Accuracy@3
239
+ - type: cosine_accuracy@5
240
+ value: 1.0
241
+ name: Cosine Accuracy@5
242
+ - type: cosine_accuracy@10
243
+ value: 1.0
244
+ name: Cosine Accuracy@10
245
+ - type: cosine_precision@1
246
+ value: 0.9583333333333334
247
+ name: Cosine Precision@1
248
+ - type: cosine_precision@3
249
+ value: 0.3333333333333333
250
+ name: Cosine Precision@3
251
+ - type: cosine_precision@5
252
+ value: 0.20000000000000004
253
+ name: Cosine Precision@5
254
+ - type: cosine_precision@10
255
+ value: 0.10000000000000002
256
+ name: Cosine Precision@10
257
+ - type: cosine_recall@1
258
+ value: 0.9583333333333334
259
+ name: Cosine Recall@1
260
+ - type: cosine_recall@3
261
+ value: 1.0
262
+ name: Cosine Recall@3
263
+ - type: cosine_recall@5
264
+ value: 1.0
265
+ name: Cosine Recall@5
266
+ - type: cosine_recall@10
267
+ value: 1.0
268
+ name: Cosine Recall@10
269
+ - type: cosine_ndcg@10
270
+ value: 0.9846220730654774
271
+ name: Cosine Ndcg@10
272
+ - type: cosine_mrr@10
273
+ value: 0.9791666666666666
274
+ name: Cosine Mrr@10
275
+ - type: cosine_map@100
276
+ value: 0.9791666666666666
277
+ name: Cosine Map@100
278
+ ---
279
+
280
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
281
+
282
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
283
+
284
+ ## Model Details
285
+
286
+ ### Model Description
287
+ - **Model Type:** Sentence Transformer
288
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
289
+ - **Maximum Sequence Length:** 512 tokens
290
+ - **Output Dimensionality:** 1024 dimensions
291
+ - **Similarity Function:** Cosine Similarity
292
+ <!-- - **Training Dataset:** Unknown -->
293
+ <!-- - **Language:** Unknown -->
294
+ <!-- - **License:** Unknown -->
295
+
296
+ ### Model Sources
297
+
298
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
299
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
300
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
301
+
302
+ ### Full Model Architecture
303
+
304
+ ```
305
+ SentenceTransformer(
306
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
307
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
308
+ (2): Normalize()
309
+ )
310
+ ```
311
+
312
+ ## Usage
313
+
314
+ ### Direct Usage (Sentence Transformers)
315
+
316
+ First install the Sentence Transformers library:
317
+
318
+ ```bash
319
+ pip install -U sentence-transformers
320
+ ```
321
+
322
+ Then you can load this model and run inference.
323
+ ```python
324
+ from sentence_transformers import SentenceTransformer
325
+
326
+ # Download from the 🤗 Hub
327
+ model = SentenceTransformer("kenrogers/legal-ft-v0")
328
+ # Run inference
329
+ sentences = [
330
+ '1. What are the hardware requirements mentioned for running a model like GPT-4?\n2. What does the author attribute the ability to run such models on less powerful hardware to?',
331
+ 'This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.\nThese models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.\nThe fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.',
332
+ 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed models currently available, significantly bigger than the largest of Meta’s Llama series, Llama 3.1 405B.\nBenchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models. This is by far the highest ranking openly licensed model.\nThe really impressive thing about DeepSeek v3 is the training cost. The model was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama 3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model that benchmarks slightly worse.',
333
+ ]
334
+ embeddings = model.encode(sentences)
335
+ print(embeddings.shape)
336
+ # [3, 1024]
337
+
338
+ # Get the similarity scores for the embeddings
339
+ similarities = model.similarity(embeddings, embeddings)
340
+ print(similarities.shape)
341
+ # [3, 3]
342
+ ```
343
+
344
+ <!--
345
+ ### Direct Usage (Transformers)
346
+
347
+ <details><summary>Click to see the direct usage in Transformers</summary>
348
+
349
+ </details>
350
+ -->
351
+
352
+ <!--
353
+ ### Downstream Usage (Sentence Transformers)
354
+
355
+ You can finetune this model on your own dataset.
356
+
357
+ <details><summary>Click to expand</summary>
358
+
359
+ </details>
360
+ -->
361
+
362
+ <!--
363
+ ### Out-of-Scope Use
364
+
365
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
366
+ -->
367
+
368
+ ## Evaluation
369
+
370
+ ### Metrics
371
+
372
+ #### Information Retrieval
373
+
374
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
375
+
376
+ | Metric | Value |
377
+ |:--------------------|:-----------|
378
+ | cosine_accuracy@1 | 0.9583 |
379
+ | cosine_accuracy@3 | 1.0 |
380
+ | cosine_accuracy@5 | 1.0 |
381
+ | cosine_accuracy@10 | 1.0 |
382
+ | cosine_precision@1 | 0.9583 |
383
+ | cosine_precision@3 | 0.3333 |
384
+ | cosine_precision@5 | 0.2 |
385
+ | cosine_precision@10 | 0.1 |
386
+ | cosine_recall@1 | 0.9583 |
387
+ | cosine_recall@3 | 1.0 |
388
+ | cosine_recall@5 | 1.0 |
389
+ | cosine_recall@10 | 1.0 |
390
+ | **cosine_ndcg@10** | **0.9846** |
391
+ | cosine_mrr@10 | 0.9792 |
392
+ | cosine_map@100 | 0.9792 |
393
+
394
+ <!--
395
+ ## Bias, Risks and Limitations
396
+
397
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
398
+ -->
399
+
400
+ <!--
401
+ ### Recommendations
402
+
403
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
404
+ -->
405
+
406
+ ## Training Details
407
+
408
+ ### Training Dataset
409
+
410
+ #### Unnamed Dataset
411
+
412
+ * Size: 156 training samples
413
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
414
+ * Approximate statistics based on the first 156 samples:
415
+ | | sentence_0 | sentence_1 |
416
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
417
+ | type | string | string |
418
+ | details | <ul><li>min: 30 tokens</li><li>mean: 43.32 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 134.96 tokens</li><li>max: 214 tokens</li></ul> |
419
+ * Samples:
420
+ | sentence_0 | sentence_1 |
421
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
422
+ | <code>1. What significant advancements in AI were made in 2023, particularly regarding Large Language Models (LLMs)? <br>2. How does the development of LLMs in 2023 relate to the historical context of Artificial Intelligence since the 1950s?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
423
+ | <code>1. What significant advancements in AI were made in 2023, particularly regarding Large Language Models (LLMs)? <br>2. How does the development of LLMs in 2023 relate to the historical context of Artificial Intelligence since the 1950s?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
424
+ | <code>1. What are some potential applications of Large Language Models (LLMs) mentioned in the context? <br>2. What is identified as the biggest unsolved problem related to LLMs?</code> | <code>Large Language Models<br>They’re actually quite easy to build<br>You can run LLMs on your own devices<br>Hobbyists can build their own fine-tuned models<br>We don’t yet know how to build GPT-4<br>Vibes Based Development<br>LLMs are really smart, and also really, really dumb<br>Gullibility is the biggest unsolved problem<br>Code may be the best application<br>The ethics of this space remain diabolically complex<br>My blog in 2023</code> |
425
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
426
+ ```json
427
+ {
428
+ "loss": "MultipleNegativesRankingLoss",
429
+ "matryoshka_dims": [
430
+ 768,
431
+ 512,
432
+ 256,
433
+ 128,
434
+ 64
435
+ ],
436
+ "matryoshka_weights": [
437
+ 1,
438
+ 1,
439
+ 1,
440
+ 1,
441
+ 1
442
+ ],
443
+ "n_dims_per_step": -1
444
+ }
445
+ ```
446
+
447
+ ### Training Hyperparameters
448
+ #### Non-Default Hyperparameters
449
+
450
+ - `eval_strategy`: steps
451
+ - `per_device_train_batch_size`: 10
452
+ - `per_device_eval_batch_size`: 10
453
+ - `num_train_epochs`: 10
454
+ - `multi_dataset_batch_sampler`: round_robin
455
+
456
+ #### All Hyperparameters
457
+ <details><summary>Click to expand</summary>
458
+
459
+ - `overwrite_output_dir`: False
460
+ - `do_predict`: False
461
+ - `eval_strategy`: steps
462
+ - `prediction_loss_only`: True
463
+ - `per_device_train_batch_size`: 10
464
+ - `per_device_eval_batch_size`: 10
465
+ - `per_gpu_train_batch_size`: None
466
+ - `per_gpu_eval_batch_size`: None
467
+ - `gradient_accumulation_steps`: 1
468
+ - `eval_accumulation_steps`: None
469
+ - `torch_empty_cache_steps`: None
470
+ - `learning_rate`: 5e-05
471
+ - `weight_decay`: 0.0
472
+ - `adam_beta1`: 0.9
473
+ - `adam_beta2`: 0.999
474
+ - `adam_epsilon`: 1e-08
475
+ - `max_grad_norm`: 1
476
+ - `num_train_epochs`: 10
477
+ - `max_steps`: -1
478
+ - `lr_scheduler_type`: linear
479
+ - `lr_scheduler_kwargs`: {}
480
+ - `warmup_ratio`: 0.0
481
+ - `warmup_steps`: 0
482
+ - `log_level`: passive
483
+ - `log_level_replica`: warning
484
+ - `log_on_each_node`: True
485
+ - `logging_nan_inf_filter`: True
486
+ - `save_safetensors`: True
487
+ - `save_on_each_node`: False
488
+ - `save_only_model`: False
489
+ - `restore_callback_states_from_checkpoint`: False
490
+ - `no_cuda`: False
491
+ - `use_cpu`: False
492
+ - `use_mps_device`: False
493
+ - `seed`: 42
494
+ - `data_seed`: None
495
+ - `jit_mode_eval`: False
496
+ - `use_ipex`: False
497
+ - `bf16`: False
498
+ - `fp16`: False
499
+ - `fp16_opt_level`: O1
500
+ - `half_precision_backend`: auto
501
+ - `bf16_full_eval`: False
502
+ - `fp16_full_eval`: False
503
+ - `tf32`: None
504
+ - `local_rank`: 0
505
+ - `ddp_backend`: None
506
+ - `tpu_num_cores`: None
507
+ - `tpu_metrics_debug`: False
508
+ - `debug`: []
509
+ - `dataloader_drop_last`: False
510
+ - `dataloader_num_workers`: 0
511
+ - `dataloader_prefetch_factor`: None
512
+ - `past_index`: -1
513
+ - `disable_tqdm`: False
514
+ - `remove_unused_columns`: True
515
+ - `label_names`: None
516
+ - `load_best_model_at_end`: False
517
+ - `ignore_data_skip`: False
518
+ - `fsdp`: []
519
+ - `fsdp_min_num_params`: 0
520
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
521
+ - `fsdp_transformer_layer_cls_to_wrap`: None
522
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
523
+ - `deepspeed`: None
524
+ - `label_smoothing_factor`: 0.0
525
+ - `optim`: adamw_torch
526
+ - `optim_args`: None
527
+ - `adafactor`: False
528
+ - `group_by_length`: False
529
+ - `length_column_name`: length
530
+ - `ddp_find_unused_parameters`: None
531
+ - `ddp_bucket_cap_mb`: None
532
+ - `ddp_broadcast_buffers`: False
533
+ - `dataloader_pin_memory`: True
534
+ - `dataloader_persistent_workers`: False
535
+ - `skip_memory_metrics`: True
536
+ - `use_legacy_prediction_loop`: False
537
+ - `push_to_hub`: False
538
+ - `resume_from_checkpoint`: None
539
+ - `hub_model_id`: None
540
+ - `hub_strategy`: every_save
541
+ - `hub_private_repo`: None
542
+ - `hub_always_push`: False
543
+ - `gradient_checkpointing`: False
544
+ - `gradient_checkpointing_kwargs`: None
545
+ - `include_inputs_for_metrics`: False
546
+ - `include_for_metrics`: []
547
+ - `eval_do_concat_batches`: True
548
+ - `fp16_backend`: auto
549
+ - `push_to_hub_model_id`: None
550
+ - `push_to_hub_organization`: None
551
+ - `mp_parameters`:
552
+ - `auto_find_batch_size`: False
553
+ - `full_determinism`: False
554
+ - `torchdynamo`: None
555
+ - `ray_scope`: last
556
+ - `ddp_timeout`: 1800
557
+ - `torch_compile`: False
558
+ - `torch_compile_backend`: None
559
+ - `torch_compile_mode`: None
560
+ - `dispatch_batches`: None
561
+ - `split_batches`: None
562
+ - `include_tokens_per_second`: False
563
+ - `include_num_input_tokens_seen`: False
564
+ - `neftune_noise_alpha`: None
565
+ - `optim_target_modules`: None
566
+ - `batch_eval_metrics`: False
567
+ - `eval_on_start`: False
568
+ - `use_liger_kernel`: False
569
+ - `eval_use_gather_object`: False
570
+ - `average_tokens_across_devices`: False
571
+ - `prompts`: None
572
+ - `batch_sampler`: batch_sampler
573
+ - `multi_dataset_batch_sampler`: round_robin
574
+
575
+ </details>
576
+
577
+ ### Training Logs
578
+ | Epoch | Step | cosine_ndcg@10 |
579
+ |:-----:|:----:|:--------------:|
580
+ | 1.0 | 16 | 0.9846 |
581
+ | 2.0 | 32 | 0.9792 |
582
+ | 3.0 | 48 | 0.9763 |
583
+ | 3.125 | 50 | 0.9763 |
584
+ | 4.0 | 64 | 0.9792 |
585
+ | 5.0 | 80 | 0.9792 |
586
+ | 6.0 | 96 | 0.9846 |
587
+ | 6.25 | 100 | 0.9846 |
588
+ | 7.0 | 112 | 0.9846 |
589
+ | 8.0 | 128 | 0.9846 |
590
+ | 9.0 | 144 | 0.9846 |
591
+ | 9.375 | 150 | 0.9846 |
592
+ | 10.0 | 160 | 0.9846 |
593
+
594
+
595
+ ### Framework Versions
596
+ - Python: 3.11.11
597
+ - Sentence Transformers: 3.4.1
598
+ - Transformers: 4.48.2
599
+ - PyTorch: 2.5.1+cu124
600
+ - Accelerate: 1.3.0
601
+ - Datasets: 3.2.0
602
+ - Tokenizers: 0.21.0
603
+
604
+ ## Citation
605
+
606
+ ### BibTeX
607
+
608
+ #### Sentence Transformers
609
+ ```bibtex
610
+ @inproceedings{reimers-2019-sentence-bert,
611
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
612
+ author = "Reimers, Nils and Gurevych, Iryna",
613
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
614
+ month = "11",
615
+ year = "2019",
616
+ publisher = "Association for Computational Linguistics",
617
+ url = "https://arxiv.org/abs/1908.10084",
618
+ }
619
+ ```
620
+
621
+ #### MatryoshkaLoss
622
+ ```bibtex
623
+ @misc{kusupati2024matryoshka,
624
+ title={Matryoshka Representation Learning},
625
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
626
+ year={2024},
627
+ eprint={2205.13147},
628
+ archivePrefix={arXiv},
629
+ primaryClass={cs.LG}
630
+ }
631
+ ```
632
+
633
+ #### MultipleNegativesRankingLoss
634
+ ```bibtex
635
+ @misc{henderson2017efficient,
636
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
637
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
638
+ year={2017},
639
+ eprint={1705.00652},
640
+ archivePrefix={arXiv},
641
+ primaryClass={cs.CL}
642
+ }
643
+ ```
644
+
645
+ <!--
646
+ ## Glossary
647
+
648
+ *Clearly define terms in order to be accessible across audiences.*
649
+ -->
650
+
651
+ <!--
652
+ ## Model Card Authors
653
+
654
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
655
+ -->
656
+
657
+ <!--
658
+ ## Model Card Contact
659
+
660
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
661
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b8df178043e9e7dc0f8e66c396278db496e29b36fb43ab348e7a0cc813f3b9b
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff