Upload demo_caption_elements.py
Browse files- demo_caption_elements.py +176 -0
demo_caption_elements.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
5 |
+
|
6 |
+
|
7 |
+
def read_json(file_path):
|
8 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
9 |
+
data = json.load(file)
|
10 |
+
return data
|
11 |
+
|
12 |
+
def write_json(file_path, data):
|
13 |
+
with open(file_path, 'w', encoding='utf-8') as file:
|
14 |
+
json.dump(data, file, ensure_ascii=False, indent=4)
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
from openai import OpenAI
|
19 |
+
import pprint
|
20 |
+
import json
|
21 |
+
from llamaapi import LlamaAPI
|
22 |
+
|
23 |
+
# Initialize the SDK
|
24 |
+
llama = LlamaAPI("LL-SmrO4FiBWvkfaGskA4fe6qLSVa7Ob5B83jOojHNq8HkrukjRRG4Xt3CF1mLV9u6o")
|
25 |
+
os.environ["OPENAI_API_KEY"] = "sk-proj-Jmlrkk0HauWRhffybWOKT3BlbkFJIIuX6dFVCyVG7y6lGwsh"
|
26 |
+
|
27 |
+
|
28 |
+
# client = OpenAI()
|
29 |
+
# def reponse(sample):
|
30 |
+
# completion = client.chat.completions.create(
|
31 |
+
# model="gpt-3.5-turbo",
|
32 |
+
# # model="gpt-4",
|
33 |
+
# # model= "gpt-4-1106-vision-preview",
|
34 |
+
# messages=[
|
35 |
+
# {"role": "system", "content": ""},
|
36 |
+
# {"role": "user", "content": sample}
|
37 |
+
# ]
|
38 |
+
# )
|
39 |
+
|
40 |
+
# # print(completion.choices[0].message.content)
|
41 |
+
# return completion.choices[0].message.content
|
42 |
+
# return completion
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
from chat import MiniCPMVChat, img2base64
|
47 |
+
import torch
|
48 |
+
import json
|
49 |
+
from PIL import Image
|
50 |
+
|
51 |
+
|
52 |
+
torch.manual_seed(0)
|
53 |
+
chat_model = MiniCPMVChat('/code/ICLR_2024/Model/MiniCPM-Llama3-V-2_5')
|
54 |
+
|
55 |
+
|
56 |
+
image_path = '/code/ICLR_2024/SeeClick/output_image_27.png'
|
57 |
+
# image = Image.open(image_path)
|
58 |
+
# image.show()
|
59 |
+
|
60 |
+
qs = """
|
61 |
+
List all the application name and location in the image that can be interacted with, the result shoudl be like a list
|
62 |
+
"""
|
63 |
+
|
64 |
+
im_64 = img2base64(image_path)
|
65 |
+
msgs = [{"role": "user", "content": qs}]
|
66 |
+
inputs = {"image": im_64, "question": json.dumps(msgs)}
|
67 |
+
answer = chat_model.chat(inputs)
|
68 |
+
|
69 |
+
data = read_json("/code/ICLR_2024/Auto-GUI/dataset/blip/single_blip_train_llava_10000_caption_elements_llama3_70b.json")
|
70 |
+
|
71 |
+
|
72 |
+
retrival_dict = {}
|
73 |
+
for index, i in enumerate(data):
|
74 |
+
retrival_dict[i['image']] = index
|
75 |
+
|
76 |
+
path = '/code/ICLR_2024/Auto-GUI/dataset/'
|
77 |
+
image_id = [ x['image'].split('/')[2].split('.')[0] for x in data]
|
78 |
+
|
79 |
+
all_pair_id = {}
|
80 |
+
all_pair_key = []
|
81 |
+
for i in image_id:
|
82 |
+
key = i.split('_')[0]
|
83 |
+
all_pair_id[key] = []
|
84 |
+
all_pair_key.append(key)
|
85 |
+
|
86 |
+
for i in image_id:
|
87 |
+
key = i.split('_')[0]
|
88 |
+
value = i.split('_')[1]
|
89 |
+
all_pair_id[key].append(value)
|
90 |
+
|
91 |
+
all_pair_key = list(set(all_pair_key))
|
92 |
+
path2 = 'blip/single_texts_splits/'
|
93 |
+
|
94 |
+
|
95 |
+
from tqdm import tqdm
|
96 |
+
for i in tqdm(all_pair_key[770:]):
|
97 |
+
|
98 |
+
num_list = all_pair_id[i]
|
99 |
+
for j in num_list:
|
100 |
+
|
101 |
+
retival_path = path2 + i + '_' + j + '.png'
|
102 |
+
new_path = path + path2 + i + '_' + j + '.png'
|
103 |
+
ids = retrival_dict[retival_path]
|
104 |
+
|
105 |
+
image_path = path + data[ids]['image']
|
106 |
+
caption = data[ids]['caption']
|
107 |
+
Previous = data[ids]['conversations'][0]['value']
|
108 |
+
|
109 |
+
Previous = Previous.lower()
|
110 |
+
task = Previous.split('goal')[1]
|
111 |
+
|
112 |
+
Demo_prompt_step1 = """
|
113 |
+
List all the application name and location in the image that can be interacted with, the result shoudl be like a list
|
114 |
+
"""
|
115 |
+
|
116 |
+
im_64 = img2base64(image_path)
|
117 |
+
msgs = [{"role": "user", "content": Demo_prompt_step1}]
|
118 |
+
inputs = {"image": im_64, "question": json.dumps(msgs)}
|
119 |
+
answer = chat_model.chat(inputs)
|
120 |
+
|
121 |
+
data[ids]['icon_list_raw'] = answer
|
122 |
+
pprint.pprint(answer)
|
123 |
+
|
124 |
+
prompt = """ ##### refine it to a list, list name must be elements , just like:
|
125 |
+
elements = [
|
126 |
+
"Newegg",
|
127 |
+
"Newegg CEO",
|
128 |
+
"Newegg customer service",
|
129 |
+
"Newegg founder",
|
130 |
+
"Newegg promo code",
|
131 |
+
"Newegg return policy",
|
132 |
+
"Newegg revenue",
|
133 |
+
"Newegg military discounts"]
|
134 |
+
|
135 |
+
Answer the python list only!
|
136 |
+
##### """
|
137 |
+
|
138 |
+
import time
|
139 |
+
time.sleep(2)
|
140 |
+
|
141 |
+
api_request_json = {
|
142 |
+
"model": "llama3-70b",
|
143 |
+
"messages": [
|
144 |
+
{"role": "system", "content": "You are a assistant that will handle the corresponding text formatting for me."},
|
145 |
+
{"role": "user", "content": answer + prompt},
|
146 |
+
|
147 |
+
],
|
148 |
+
"max_tokens": 1024
|
149 |
+
|
150 |
+
}
|
151 |
+
|
152 |
+
try:
|
153 |
+
# new_answer = reponse(answer + prompt) # GPT4 Version
|
154 |
+
response = llama.run(api_request_json)
|
155 |
+
new_answer = response.json()['choices'][0]['message']['content']
|
156 |
+
print('======================================================')
|
157 |
+
pprint.pprint(new_answer)
|
158 |
+
print('======================================================')
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error in LLAMA API Generation : {e}")
|
161 |
+
import time
|
162 |
+
time.sleep(30)
|
163 |
+
continue
|
164 |
+
|
165 |
+
try:
|
166 |
+
exec(new_answer)
|
167 |
+
data[ids]['icon_list'] = elements
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error in setting data[ids]['icon_list']: {e}")
|
170 |
+
continue
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
write_json('/code/ICLR_2024/Auto-GUI/dataset/blip/single_blip_train_llava_10000_caption_elements_llama3_70b.json',data)
|
175 |
+
|
176 |
+
|