Upload microllama_v2.yaml with huggingface_hub
Browse files- microllama_v2.yaml +121 -0
microllama_v2.yaml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
|
3 |
+
# ``model_config``. (type: Optional[str], default: null)
|
4 |
+
model_name: micro-llama-300M-v2
|
5 |
+
|
6 |
+
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
|
7 |
+
# ``model_config``. (type: Optional[Config], default: null)
|
8 |
+
model_config:
|
9 |
+
|
10 |
+
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
|
11 |
+
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
|
12 |
+
out_dir: out/pretrain/micro-llama-v2
|
13 |
+
|
14 |
+
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
|
15 |
+
precision: bf16-mixed
|
16 |
+
|
17 |
+
# Optional path to a checkpoint directory to initialize the model from.
|
18 |
+
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
|
19 |
+
# initial_checkpoint_dir: /root/litgpt/out_lightning_ai/pretrain/micro-llama-v2/step-00128000/
|
20 |
+
initial_checkpoint_dir: /root/litgpt/out_lightning_ai/step-00128000-converted
|
21 |
+
|
22 |
+
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
|
23 |
+
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
|
24 |
+
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
|
25 |
+
# (type: Union[bool, Literal["auto"], Path], default: False)
|
26 |
+
resume: False
|
27 |
+
|
28 |
+
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
|
29 |
+
data: MicroLlama
|
30 |
+
|
31 |
+
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
|
32 |
+
train:
|
33 |
+
|
34 |
+
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
|
35 |
+
save_interval: 1000
|
36 |
+
|
37 |
+
# Number of iterations between logging calls (type: int, default: 1)
|
38 |
+
log_interval: 10
|
39 |
+
|
40 |
+
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 48)
|
41 |
+
# Scale this number according to the number of GPU and memory size per GPU
|
42 |
+
# For example, we used 16 for 4 x 48G L40s
|
43 |
+
global_batch_size: 32
|
44 |
+
|
45 |
+
# Number of samples per data-parallel rank (type: int, default: 12)
|
46 |
+
# Scale this number according to the memory size per GPU
|
47 |
+
# For example, we used 12 for 24G 4090
|
48 |
+
micro_batch_size: 4
|
49 |
+
|
50 |
+
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
51 |
+
lr_warmup_steps: 2000
|
52 |
+
|
53 |
+
# Number of epochs to train on (type: Optional[int], default: null)
|
54 |
+
epochs:
|
55 |
+
|
56 |
+
# Total number of tokens to train on (type: Optional[int], default: 3000000000000)
|
57 |
+
max_tokens: 3000000000000
|
58 |
+
|
59 |
+
# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
|
60 |
+
max_steps:
|
61 |
+
|
62 |
+
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
63 |
+
max_seq_length: 2048
|
64 |
+
|
65 |
+
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
66 |
+
tie_embeddings:
|
67 |
+
|
68 |
+
# (type: Optional[float], default: 1.0)
|
69 |
+
max_norm: 1.0
|
70 |
+
|
71 |
+
# (type: float, default: 4e-05)
|
72 |
+
min_lr: 4.0e-05
|
73 |
+
|
74 |
+
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
|
75 |
+
eval:
|
76 |
+
|
77 |
+
# Number of optimizer steps between evaluation calls (type: int, default: 1000)
|
78 |
+
interval: 1000
|
79 |
+
|
80 |
+
# Number of tokens to generate (type: Optional[int], default: null)
|
81 |
+
max_new_tokens:
|
82 |
+
|
83 |
+
# Number of iterations (type: int, default: 100)
|
84 |
+
max_iters: 100
|
85 |
+
|
86 |
+
# Whether to evaluate on the validation set at the beginning of the training
|
87 |
+
initial_validation: false
|
88 |
+
|
89 |
+
# Optimizer-related arguments
|
90 |
+
optimizer:
|
91 |
+
|
92 |
+
class_path: torch.optim.AdamW
|
93 |
+
|
94 |
+
init_args:
|
95 |
+
|
96 |
+
# (type: float, default: 0.001)
|
97 |
+
lr: 4e-4
|
98 |
+
|
99 |
+
# (type: float, default: 0.01)
|
100 |
+
weight_decay: 0.1
|
101 |
+
|
102 |
+
# (type: tuple, default: (0.9,0.999))
|
103 |
+
betas:
|
104 |
+
- 0.9
|
105 |
+
- 0.95
|
106 |
+
|
107 |
+
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
108 |
+
devices: auto
|
109 |
+
|
110 |
+
# How many nodes to use. (type: int, default: 1)
|
111 |
+
num_nodes: 1
|
112 |
+
|
113 |
+
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
|
114 |
+
# module require this. (type: Optional[Path], default: null)
|
115 |
+
tokenizer_dir: checkpoints/meta-llama/Llama-3.2-1B
|
116 |
+
|
117 |
+
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
|
118 |
+
logger_name: wandb
|
119 |
+
|
120 |
+
# The random seed to use for reproducibility. (type: int, default: 42)
|
121 |
+
seed: 42
|