kasrahabib commited on
Commit
d10eb4f
·
1 Parent(s): 1233f56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -3,7 +3,7 @@ license: apache-2.0
3
  tags:
4
  - generated_from_keras_callback
5
  model-index:
6
- - name: kasrahabib/KM35NCDF-NF-SUBCLASSES-cls
7
  results: []
8
  widget:
9
  - text: "Application needs to keep track of subtasks in a task."
@@ -17,7 +17,7 @@ widget:
17
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
18
  probably proofread and complete it, then remove this comment. -->
19
 
20
- # kasrahabib/KM35NCDF-NF-SUBCLASSES-cls
21
 
22
  This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on Software Requirements Dataset (SWARD) for classifying 19 Non-functional requirements. Note that based on literature, two out of 19 classes are Data and Behavior, which belong to types of Functional software requirements. It achieves the following results on the evaluation set:
23
  - Train Loss: 0.1691
@@ -54,7 +54,7 @@ from transformers import pipeline
54
 
55
  frame_work = 'tf'
56
  task = 'text-classification'
57
- model_ckpt = 'kasrahabib/KM35NCDF-NF-SUBCLASSES-cls'
58
 
59
  software_requirment_cls = pipeline(task = task, model = model_ckpt, framework = frame_work)
60
 
@@ -76,7 +76,7 @@ software_requirment_cls([example_1_US, example_2_PE, example_3_AC])
76
  import numpy as np
77
  from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
78
 
79
- model_ckpt = 'kasrahabib/KM35NCDF-NF-SUBCLASSES-cls'
80
  tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
81
  model = TFAutoModelForSequenceClassification.from_pretrained(model_ckpt)
82
 
@@ -113,7 +113,7 @@ Then modify the code as below:
113
  import numpy as np
114
  from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
115
 
116
- model_ckpt = 'rest_of_the_path/KM35NCDF-NF-SUBCLASSES-cls'
117
  tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
118
  model = TFAutoModelForSequenceClassification.from_pretrained(model_ckpt)
119
 
 
3
  tags:
4
  - generated_from_keras_callback
5
  model-index:
6
+ - name: kasrahabib/KM35NCDF
7
  results: []
8
  widget:
9
  - text: "Application needs to keep track of subtasks in a task."
 
17
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
18
  probably proofread and complete it, then remove this comment. -->
19
 
20
+ # kasrahabib/KM35NCDF
21
 
22
  This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on Software Requirements Dataset (SWARD) for classifying 19 Non-functional requirements. Note that based on literature, two out of 19 classes are Data and Behavior, which belong to types of Functional software requirements. It achieves the following results on the evaluation set:
23
  - Train Loss: 0.1691
 
54
 
55
  frame_work = 'tf'
56
  task = 'text-classification'
57
+ model_ckpt = 'kasrahabib/KM35NCDF '
58
 
59
  software_requirment_cls = pipeline(task = task, model = model_ckpt, framework = frame_work)
60
 
 
76
  import numpy as np
77
  from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
78
 
79
+ model_ckpt = 'kasrahabib/KM35NCDF '
80
  tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
81
  model = TFAutoModelForSequenceClassification.from_pretrained(model_ckpt)
82
 
 
113
  import numpy as np
114
  from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
115
 
116
+ model_ckpt = 'rest_of_the_path/KM35NCDF '
117
  tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
118
  model = TFAutoModelForSequenceClassification.from_pretrained(model_ckpt)
119