karthik-2905 commited on
Commit
ad654f3
ยท
verified ยท
1 Parent(s): ca231a0

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ m4_transformer_results.png filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/Transformers-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Transformers from Scratch - Complete Implementation
3
+ emoji: ๐Ÿ”ฎ
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: pytorch
7
+ app_file: Transformers.ipynb
8
+ pinned: false
9
+ license: mit
10
+ tags:
11
+ - deep-learning
12
+ - transformers
13
+ - attention
14
+ - pytorch
15
+ - nlp
16
+ - text-classification
17
+ - sentiment-analysis
18
+ - educational
19
+ - from-scratch
20
+ datasets:
21
+ - synthetic-movie-reviews
22
+ ---
23
+
24
+ # Transformers from Scratch: Complete Implementation
25
+
26
+ A comprehensive PyTorch implementation of the Transformer architecture from "Attention Is All You Need", featuring detailed mathematical foundations, educational content, and practical text classification applications.
27
+
28
+ ## Model Description
29
+
30
+ This repository contains a complete, from-scratch implementation of the Transformer architecture. The model demonstrates the core concepts behind modern NLP systems like BERT, GPT, and ChatGPT through a practical sentiment analysis task. This implementation serves as both a working model and an educational resource for understanding the revolutionary attention mechanism.
31
+
32
+ ### Architecture Details
33
+
34
+ - **Model Type**: Transformer Encoder for Text Classification
35
+ - **Framework**: PyTorch
36
+ - **Task**: Binary sentiment classification (positive/negative movie reviews)
37
+ - **Model Dimension**: 128
38
+ - **Attention Heads**: 8
39
+ - **Layers**: 4 Transformer blocks
40
+ - **Feed-Forward Dimension**: 256
41
+ - **Total Parameters**: ~200K
42
+ - **Vocabulary Size**: Dynamic (built from training data)
43
+
44
+ ### Key Components
45
+
46
+ 1. **Multi-Head Attention**: Core mechanism allowing parallel processing of sequences
47
+ 2. **Positional Encoding**: Sine/cosine embeddings to inject position information
48
+ 3. **Transformer Blocks**: Attention + feed-forward with residual connections
49
+ 4. **Layer Normalization**: Stabilizes training and improves convergence
50
+ 5. **Classification Head**: Global average pooling + linear layer for predictions
51
+
52
+ ## Mathematical Foundation
53
+
54
+ ### Scaled Dot-Product Attention
55
+ ```
56
+ Attention(Q, K, V) = softmax(QK^T / โˆšd_k)V
57
+ ```
58
+
59
+ ### Multi-Head Attention
60
+ ```
61
+ MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O
62
+ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
63
+ ```
64
+
65
+ ### Positional Encoding
66
+ ```
67
+ PE(pos, 2i) = sin(pos/10000^(2i/d_model))
68
+ PE(pos, 2i+1) = cos(pos/10000^(2i/d_model))
69
+ ```
70
+
71
+ ## Training Details
72
+
73
+ - **Dataset**: Synthetic movie reviews (positive/negative sentiment)
74
+ - **Optimizer**: AdamW with weight decay (0.01)
75
+ - **Learning Rate**: 0.0001 with cosine annealing
76
+ - **Batch Size**: 16
77
+ - **Max Sequence Length**: 24 tokens
78
+ - **Training Epochs**: 30
79
+ - **Hardware**: Optimized for Apple M4 and CUDA GPUs
80
+
81
+ ## Model Performance
82
+
83
+ ### Metrics
84
+ - **Test Accuracy**: 85%+
85
+ - **Training Time**: ~10 minutes on Apple M4
86
+ - **Model Size**: 200K parameters
87
+ - **Convergence**: Stable training without overfitting
88
+
89
+ ### Capabilities
90
+ - โœ… Binary sentiment classification
91
+ - โœ… Attention weight visualization
92
+ - โœ… Fast inference on modern hardware
93
+ - โœ… Educational transparency
94
+ - โœ… Easily extensible architecture
95
+
96
+ ## Usage
97
+
98
+ ### Quick Start
99
+
100
+ ```python
101
+ import torch
102
+ import torch.nn as nn
103
+ import math
104
+
105
+ # Load the complete implementation (from notebook)
106
+ class TransformerClassifier(nn.Module):
107
+ def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff, max_len, num_classes):
108
+ super().__init__()
109
+ self.d_model = d_model
110
+ self.embedding = nn.Embedding(vocab_size, d_model)
111
+ self.pos_encoding = PositionalEncoding(d_model, max_len)
112
+
113
+ self.transformer_blocks = nn.ModuleList([
114
+ TransformerBlock(d_model, num_heads, d_ff)
115
+ for _ in range(num_layers)
116
+ ])
117
+
118
+ self.norm = nn.LayerNorm(d_model)
119
+ self.classifier = nn.Linear(d_model, num_classes)
120
+
121
+ def forward(self, x):
122
+ # Embedding + positional encoding
123
+ x = self.embedding(x) * math.sqrt(self.d_model)
124
+ x = self.pos_encoding(x)
125
+
126
+ # Transformer blocks
127
+ for transformer in self.transformer_blocks:
128
+ x = transformer(x)
129
+
130
+ # Classification
131
+ x = self.norm(x)
132
+ x = x.mean(dim=1) # Global average pooling
133
+ return self.classifier(x)
134
+
135
+ # Load trained model
136
+ model = TransformerClassifier(
137
+ vocab_size=vocab_size,
138
+ d_model=128,
139
+ num_heads=8,
140
+ num_layers=4,
141
+ d_ff=256,
142
+ max_len=24,
143
+ num_classes=2
144
+ )
145
+ model.load_state_dict(torch.load('best_transformer_model.pth'))
146
+ model.eval()
147
+
148
+ # Example inference
149
+ def predict_sentiment(text, model, vocab_to_idx, max_length=24):
150
+ tokens = tokenize_text(text, vocab_to_idx, max_length)
151
+ with torch.no_grad():
152
+ output = model(tokens.unsqueeze(0))
153
+ prediction = torch.softmax(output, dim=1)
154
+ return "Positive" if prediction[0][1] > 0.5 else "Negative"
155
+
156
+ # Test the model
157
+ result = predict_sentiment("This movie was absolutely fantastic!", model, vocab_to_idx)
158
+ print(f"Sentiment: {result}")
159
+ ```
160
+
161
+ ### Advanced Usage
162
+
163
+ ```python
164
+ # Visualize attention weights
165
+ def visualize_attention(model, text, vocab_to_idx):
166
+ # Extract attention weights from each layer
167
+ # Create heatmaps showing what the model focuses on
168
+ pass
169
+
170
+ # Fine-tune on new data
171
+ def fine_tune_model(model, new_data_loader, epochs=5):
172
+ optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
173
+ # Continue training on domain-specific data
174
+ pass
175
+ ```
176
+
177
+ ## Visualizations and Analysis
178
+
179
+ 1. **Training Curves**: Loss and accuracy evolution over epochs
180
+ 2. **Attention Heatmaps**: Visualize what the model pays attention to
181
+ 3. **Performance Metrics**: Precision, recall, F1-score breakdowns
182
+ 4. **Architecture Diagrams**: Component-wise model visualization
183
+ 5. **Error Analysis**: Common failure cases and model limitations
184
+
185
+ ## Files and Outputs
186
+
187
+ - `Transformers.ipynb`: Complete implementation with educational content
188
+ - `best_transformer_model.pth`: Trained model weights
189
+ - `m4_transformer_results.png`: Training curves and performance metrics
190
+ - Architecture visualization and attention weight examples
191
+
192
+ ## Educational Value
193
+
194
+ This implementation is designed as a comprehensive learning resource featuring:
195
+
196
+ ### Mathematical Understanding
197
+ - **Complete Derivations**: From attention theory to implementation
198
+ - **Step-by-Step Breakdown**: Each component explained individually
199
+ - **Visual Mathematics**: Attention visualizations and formula explanations
200
+ - **Practical Examples**: Concrete numerical calculations
201
+
202
+ ### Implementation Insights
203
+ - **Clean Code Architecture**: Modular, readable, and well-documented
204
+ - **Best Practices**: Modern PyTorch patterns and techniques
205
+ - **Performance Optimization**: Efficient training and inference
206
+ - **Debugging Techniques**: How to monitor and improve training
207
+
208
+ ### Real-World Applications
209
+ - **End-to-End Pipeline**: From raw text to predictions
210
+ - **Production Considerations**: Model deployment and optimization
211
+ - **Extension Examples**: How to adapt for different tasks
212
+ - **Transfer Learning**: Building on pre-trained representations
213
+
214
+ ## Applications
215
+
216
+ This Transformer implementation can be adapted for:
217
+
218
+ ### Text Classification Tasks
219
+ - **Sentiment Analysis**: Movie reviews, product feedback, social media
220
+ - **Topic Classification**: News categorization, document organization
221
+ - **Spam Detection**: Email filtering, content moderation
222
+ - **Intent Recognition**: Chatbot understanding, voice assistants
223
+
224
+ ### Sequence Processing
225
+ - **Named Entity Recognition**: Extract people, places, organizations
226
+ - **Part-of-Speech Tagging**: Grammatical analysis
227
+ - **Text Similarity**: Document matching, plagiarism detection
228
+ - **Feature Extraction**: Dense representations for downstream tasks
229
+
230
+ ### Research and Development
231
+ - **Architecture Experiments**: Test new attention mechanisms
232
+ - **Ablation Studies**: Understand component contributions
233
+ - **Scaling Experiments**: Larger models and datasets
234
+ - **Novel Applications**: Domain-specific adaptations
235
+
236
+ ## Comparison with Other Architectures
237
+
238
+ ### Advantages over RNNs
239
+ - โœ… **Parallel Processing**: Much faster training and inference
240
+ - โœ… **Long-Range Dependencies**: Better handling of distant relationships
241
+ - โœ… **Scalability**: Efficient on modern hardware
242
+ - โœ… **Interpretability**: Attention weights provide insights
243
+
244
+ ### Advantages over CNNs
245
+ - โœ… **Sequence Modeling**: Natural fit for text and time series
246
+ - โœ… **Variable Length**: Handle sequences of any length
247
+ - โœ… **Global Context**: Attend to entire sequence simultaneously
248
+ - โœ… **Position Awareness**: Explicit positional information
249
+
250
+ ### Educational Benefits
251
+ - ๐ŸŽ“ **Foundation Understanding**: Core concepts behind modern NLP
252
+ - ๐ŸŽ“ **Mathematical Clarity**: Clean mathematical formulations
253
+ - ๐ŸŽ“ **Implementation Practice**: Hands-on coding experience
254
+ - ๐ŸŽ“ **Research Preparation**: Basis for advanced architectures
255
+
256
+ ## Citation
257
+
258
+ If you use this implementation in your research or projects, please cite:
259
+
260
+ ```bibtex
261
+ @misc{transformers_from_scratch_2024,
262
+ title={Transformers from Scratch: Complete Implementation},
263
+ author={Gruhesh Kurra},
264
+ year={2024},
265
+ url={https://huggingface.co/karthik-2905/TransformersFromScratch}
266
+ }
267
+ ```
268
+
269
+ ## Future Extensions
270
+
271
+ Planned improvements and research directions:
272
+
273
+ - ๐Ÿ”„ **Encoder-Decoder Architecture**: Full sequence-to-sequence implementation
274
+ - ๐ŸŽจ **Pre-training Pipeline**: Large-scale language model training
275
+ - ๐Ÿ“Š **Alternative Attention**: Sparse, local, and linear attention variants
276
+ - ๐Ÿ–ผ๏ธ **Vision Transformers**: Adapt architecture for image tasks
277
+ - ๐ŸŽต **Multimodal Transformers**: Text, image, and audio processing
278
+ - ๐Ÿงฌ **Scientific Applications**: Protein sequences, molecular modeling
279
+
280
+ ## License
281
+
282
+ This project is licensed under the MIT License - see the LICENSE file for details.
283
+
284
+ ## Additional Resources
285
+
286
+ - **GitHub Repository**: [TransformersFromScratch](https://github.com/GruheshKurra/TransformersFromScratch)
287
+ - **Original Paper**: "Attention Is All You Need" by Vaswani et al.
288
+ - **Educational Content**: Complete mathematical derivations and examples
289
+ - **Performance Benchmarks**: Detailed analysis and comparisons
290
+
291
+ ## Model Card Authors
292
+
293
+ **Gruhesh Kurra** - Implementation, documentation, and educational content
294
+
295
+ ---
296
+
297
+ **Tags**: transformers, attention, pytorch, nlp, text-classification, educational
298
+
299
+ **Model Card Last Updated**: December 2024
README_HF.md ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Transformers from Scratch - Complete Implementation
3
+ emoji: ๐Ÿ”ฎ
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: pytorch
7
+ app_file: Transformers.ipynb
8
+ pinned: false
9
+ license: mit
10
+ tags:
11
+ - deep-learning
12
+ - transformers
13
+ - attention
14
+ - pytorch
15
+ - nlp
16
+ - text-classification
17
+ - sentiment-analysis
18
+ - educational
19
+ - from-scratch
20
+ datasets:
21
+ - synthetic-movie-reviews
22
+ ---
23
+
24
+ # Transformers from Scratch: Complete Implementation
25
+
26
+ A comprehensive PyTorch implementation of the Transformer architecture from "Attention Is All You Need", featuring detailed mathematical foundations, educational content, and practical text classification applications.
27
+
28
+ ## Model Description
29
+
30
+ This repository contains a complete, from-scratch implementation of the Transformer architecture. The model demonstrates the core concepts behind modern NLP systems like BERT, GPT, and ChatGPT through a practical sentiment analysis task. This implementation serves as both a working model and an educational resource for understanding the revolutionary attention mechanism.
31
+
32
+ ### Architecture Details
33
+
34
+ - **Model Type**: Transformer Encoder for Text Classification
35
+ - **Framework**: PyTorch
36
+ - **Task**: Binary sentiment classification (positive/negative movie reviews)
37
+ - **Model Dimension**: 128
38
+ - **Attention Heads**: 8
39
+ - **Layers**: 4 Transformer blocks
40
+ - **Feed-Forward Dimension**: 256
41
+ - **Total Parameters**: ~200K
42
+ - **Vocabulary Size**: Dynamic (built from training data)
43
+
44
+ ### Key Components
45
+
46
+ 1. **Multi-Head Attention**: Core mechanism allowing parallel processing of sequences
47
+ 2. **Positional Encoding**: Sine/cosine embeddings to inject position information
48
+ 3. **Transformer Blocks**: Attention + feed-forward with residual connections
49
+ 4. **Layer Normalization**: Stabilizes training and improves convergence
50
+ 5. **Classification Head**: Global average pooling + linear layer for predictions
51
+
52
+ ## Mathematical Foundation
53
+
54
+ ### Scaled Dot-Product Attention
55
+ ```
56
+ Attention(Q, K, V) = softmax(QK^T / โˆšd_k)V
57
+ ```
58
+
59
+ ### Multi-Head Attention
60
+ ```
61
+ MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O
62
+ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
63
+ ```
64
+
65
+ ### Positional Encoding
66
+ ```
67
+ PE(pos, 2i) = sin(pos/10000^(2i/d_model))
68
+ PE(pos, 2i+1) = cos(pos/10000^(2i/d_model))
69
+ ```
70
+
71
+ ## Training Details
72
+
73
+ - **Dataset**: Synthetic movie reviews (positive/negative sentiment)
74
+ - **Optimizer**: AdamW with weight decay (0.01)
75
+ - **Learning Rate**: 0.0001 with cosine annealing
76
+ - **Batch Size**: 16
77
+ - **Max Sequence Length**: 24 tokens
78
+ - **Training Epochs**: 30
79
+ - **Hardware**: Optimized for Apple M4 and CUDA GPUs
80
+
81
+ ## Model Performance
82
+
83
+ ### Metrics
84
+ - **Test Accuracy**: 85%+
85
+ - **Training Time**: ~10 minutes on Apple M4
86
+ - **Model Size**: 200K parameters
87
+ - **Convergence**: Stable training without overfitting
88
+
89
+ ### Capabilities
90
+ - โœ… Binary sentiment classification
91
+ - โœ… Attention weight visualization
92
+ - โœ… Fast inference on modern hardware
93
+ - โœ… Educational transparency
94
+ - โœ… Easily extensible architecture
95
+
96
+ ## Usage
97
+
98
+ ### Quick Start
99
+
100
+ ```python
101
+ import torch
102
+ import torch.nn as nn
103
+ import math
104
+
105
+ # Load the complete implementation (from notebook)
106
+ class TransformerClassifier(nn.Module):
107
+ def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff, max_len, num_classes):
108
+ super().__init__()
109
+ self.d_model = d_model
110
+ self.embedding = nn.Embedding(vocab_size, d_model)
111
+ self.pos_encoding = PositionalEncoding(d_model, max_len)
112
+
113
+ self.transformer_blocks = nn.ModuleList([
114
+ TransformerBlock(d_model, num_heads, d_ff)
115
+ for _ in range(num_layers)
116
+ ])
117
+
118
+ self.norm = nn.LayerNorm(d_model)
119
+ self.classifier = nn.Linear(d_model, num_classes)
120
+
121
+ def forward(self, x):
122
+ # Embedding + positional encoding
123
+ x = self.embedding(x) * math.sqrt(self.d_model)
124
+ x = self.pos_encoding(x)
125
+
126
+ # Transformer blocks
127
+ for transformer in self.transformer_blocks:
128
+ x = transformer(x)
129
+
130
+ # Classification
131
+ x = self.norm(x)
132
+ x = x.mean(dim=1) # Global average pooling
133
+ return self.classifier(x)
134
+
135
+ # Load trained model
136
+ model = TransformerClassifier(
137
+ vocab_size=vocab_size,
138
+ d_model=128,
139
+ num_heads=8,
140
+ num_layers=4,
141
+ d_ff=256,
142
+ max_len=24,
143
+ num_classes=2
144
+ )
145
+ model.load_state_dict(torch.load('best_transformer_model.pth'))
146
+ model.eval()
147
+
148
+ # Example inference
149
+ def predict_sentiment(text, model, vocab_to_idx, max_length=24):
150
+ tokens = tokenize_text(text, vocab_to_idx, max_length)
151
+ with torch.no_grad():
152
+ output = model(tokens.unsqueeze(0))
153
+ prediction = torch.softmax(output, dim=1)
154
+ return "Positive" if prediction[0][1] > 0.5 else "Negative"
155
+
156
+ # Test the model
157
+ result = predict_sentiment("This movie was absolutely fantastic!", model, vocab_to_idx)
158
+ print(f"Sentiment: {result}")
159
+ ```
160
+
161
+ ### Advanced Usage
162
+
163
+ ```python
164
+ # Visualize attention weights
165
+ def visualize_attention(model, text, vocab_to_idx):
166
+ # Extract attention weights from each layer
167
+ # Create heatmaps showing what the model focuses on
168
+ pass
169
+
170
+ # Fine-tune on new data
171
+ def fine_tune_model(model, new_data_loader, epochs=5):
172
+ optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
173
+ # Continue training on domain-specific data
174
+ pass
175
+ ```
176
+
177
+ ## Visualizations and Analysis
178
+
179
+ 1. **Training Curves**: Loss and accuracy evolution over epochs
180
+ 2. **Attention Heatmaps**: Visualize what the model pays attention to
181
+ 3. **Performance Metrics**: Precision, recall, F1-score breakdowns
182
+ 4. **Architecture Diagrams**: Component-wise model visualization
183
+ 5. **Error Analysis**: Common failure cases and model limitations
184
+
185
+ ## Files and Outputs
186
+
187
+ - `Transformers.ipynb`: Complete implementation with educational content
188
+ - `best_transformer_model.pth`: Trained model weights
189
+ - `m4_transformer_results.png`: Training curves and performance metrics
190
+ - Architecture visualization and attention weight examples
191
+
192
+ ## Educational Value
193
+
194
+ This implementation is designed as a comprehensive learning resource featuring:
195
+
196
+ ### Mathematical Understanding
197
+ - **Complete Derivations**: From attention theory to implementation
198
+ - **Step-by-Step Breakdown**: Each component explained individually
199
+ - **Visual Mathematics**: Attention visualizations and formula explanations
200
+ - **Practical Examples**: Concrete numerical calculations
201
+
202
+ ### Implementation Insights
203
+ - **Clean Code Architecture**: Modular, readable, and well-documented
204
+ - **Best Practices**: Modern PyTorch patterns and techniques
205
+ - **Performance Optimization**: Efficient training and inference
206
+ - **Debugging Techniques**: How to monitor and improve training
207
+
208
+ ### Real-World Applications
209
+ - **End-to-End Pipeline**: From raw text to predictions
210
+ - **Production Considerations**: Model deployment and optimization
211
+ - **Extension Examples**: How to adapt for different tasks
212
+ - **Transfer Learning**: Building on pre-trained representations
213
+
214
+ ## Applications
215
+
216
+ This Transformer implementation can be adapted for:
217
+
218
+ ### Text Classification Tasks
219
+ - **Sentiment Analysis**: Movie reviews, product feedback, social media
220
+ - **Topic Classification**: News categorization, document organization
221
+ - **Spam Detection**: Email filtering, content moderation
222
+ - **Intent Recognition**: Chatbot understanding, voice assistants
223
+
224
+ ### Sequence Processing
225
+ - **Named Entity Recognition**: Extract people, places, organizations
226
+ - **Part-of-Speech Tagging**: Grammatical analysis
227
+ - **Text Similarity**: Document matching, plagiarism detection
228
+ - **Feature Extraction**: Dense representations for downstream tasks
229
+
230
+ ### Research and Development
231
+ - **Architecture Experiments**: Test new attention mechanisms
232
+ - **Ablation Studies**: Understand component contributions
233
+ - **Scaling Experiments**: Larger models and datasets
234
+ - **Novel Applications**: Domain-specific adaptations
235
+
236
+ ## Comparison with Other Architectures
237
+
238
+ ### Advantages over RNNs
239
+ - โœ… **Parallel Processing**: Much faster training and inference
240
+ - โœ… **Long-Range Dependencies**: Better handling of distant relationships
241
+ - โœ… **Scalability**: Efficient on modern hardware
242
+ - โœ… **Interpretability**: Attention weights provide insights
243
+
244
+ ### Advantages over CNNs
245
+ - โœ… **Sequence Modeling**: Natural fit for text and time series
246
+ - โœ… **Variable Length**: Handle sequences of any length
247
+ - โœ… **Global Context**: Attend to entire sequence simultaneously
248
+ - โœ… **Position Awareness**: Explicit positional information
249
+
250
+ ### Educational Benefits
251
+ - ๐ŸŽ“ **Foundation Understanding**: Core concepts behind modern NLP
252
+ - ๐ŸŽ“ **Mathematical Clarity**: Clean mathematical formulations
253
+ - ๐ŸŽ“ **Implementation Practice**: Hands-on coding experience
254
+ - ๐ŸŽ“ **Research Preparation**: Basis for advanced architectures
255
+
256
+ ## Citation
257
+
258
+ If you use this implementation in your research or projects, please cite:
259
+
260
+ ```bibtex
261
+ @misc{transformers_from_scratch_2024,
262
+ title={Transformers from Scratch: Complete Implementation},
263
+ author={Gruhesh Kurra},
264
+ year={2024},
265
+ url={https://huggingface.co/karthik-2905/TransformersFromScratch}
266
+ }
267
+ ```
268
+
269
+ ## Future Extensions
270
+
271
+ Planned improvements and research directions:
272
+
273
+ - ๐Ÿ”„ **Encoder-Decoder Architecture**: Full sequence-to-sequence implementation
274
+ - ๐ŸŽจ **Pre-training Pipeline**: Large-scale language model training
275
+ - ๐Ÿ“Š **Alternative Attention**: Sparse, local, and linear attention variants
276
+ - ๐Ÿ–ผ๏ธ **Vision Transformers**: Adapt architecture for image tasks
277
+ - ๐ŸŽต **Multimodal Transformers**: Text, image, and audio processing
278
+ - ๐Ÿงฌ **Scientific Applications**: Protein sequences, molecular modeling
279
+
280
+ ## License
281
+
282
+ This project is licensed under the MIT License - see the LICENSE file for details.
283
+
284
+ ## Additional Resources
285
+
286
+ - **GitHub Repository**: [TransformersFromScratch](https://github.com/GruheshKurra/TransformersFromScratch)
287
+ - **Original Paper**: "Attention Is All You Need" by Vaswani et al.
288
+ - **Educational Content**: Complete mathematical derivations and examples
289
+ - **Performance Benchmarks**: Detailed analysis and comparisons
290
+
291
+ ## Model Card Authors
292
+
293
+ **Gruhesh Kurra** - Implementation, documentation, and educational content
294
+
295
+ ---
296
+
297
+ **Tags**: transformers, attention, pytorch, nlp, text-classification, educational
298
+
299
+ **Model Card Last Updated**: December 2024
Transformers.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
best_transformer_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d2c6241ca2e72ed6e0587c6875485bb522b2b55d4fc6272c8686f139a379f20
3
+ size 2215301
m4_transformer_results.png ADDED

Git LFS Details

  • SHA256: 93adbfc16ced197d81e7bc2a5dcfb316f4f10da61c15f0dc7736077202b74ba4
  • Pointer size: 131 Bytes
  • Size of remote file: 218 kB