from typing import Dict, List, Any import torch from diffusers import StableDiffusionXLImg2ImgPipeline from PIL import Image import base64 from io import BytesIO # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") class EndpointHandler(): def __init__(self, path=""): self.smooth_pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16 ) self.smooth_pipe.to("cuda") def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ :param data: A dictionary contains `inputs` and optional `image` field. :return: A dictionary with `image` field contains image in base64. """ encoded_image = data.pop("image", None) prompt = data.pop("prompt", "") if encoded_image is not None: image = self.decode_base64_image(encoded_image) self.smooth_pipe.enable_xformers_memory_efficient_attention() out = self.smooth_pipe(prompt, image=image, ).images[0] return out # helper to decode input image def decode_base64_image(self, image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) image = Image.open(buffer) return image