Upload handler.py
Browse files- handler.py +58 -0
handler.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
# set device
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
if device.type != 'cuda':
|
13 |
+
raise ValueError("need to run on GPU")
|
14 |
+
|
15 |
+
class EndpointHandler():
|
16 |
+
def __init__(self, path=""):
|
17 |
+
# load StableDiffusionInpaintPipeline pipeline
|
18 |
+
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
19 |
+
"runwayml/stable-diffusion-inpainting",
|
20 |
+
revision="fp16",
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
)
|
23 |
+
# use DPMSolverMultistepScheduler
|
24 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
25 |
+
# move to device
|
26 |
+
self.pipe = self.pipe.to(device)
|
27 |
+
|
28 |
+
|
29 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
30 |
+
"""
|
31 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
32 |
+
:return: A dictionary with `image` field contains image in base64.
|
33 |
+
"""
|
34 |
+
encoded_image = data.pop("image", None)
|
35 |
+
encoded_mask_image = data.pop("mask_image", None)
|
36 |
+
|
37 |
+
prompt = data.pop("prompt", "")
|
38 |
+
|
39 |
+
# process image
|
40 |
+
if encoded_image is not None and encoded_mask_image is not None:
|
41 |
+
image = self.decode_base64_image(encoded_image)
|
42 |
+
mask_image = self.decode_base64_image(encoded_mask_image)
|
43 |
+
else:
|
44 |
+
image = None
|
45 |
+
mask_image = None
|
46 |
+
|
47 |
+
# run inference pipeline
|
48 |
+
out = self.pipe(prompt=prompt, image=image, mask_image=mask_image)
|
49 |
+
|
50 |
+
# return first generate PIL image
|
51 |
+
return out.images[0]
|
52 |
+
|
53 |
+
# helper to decode input image
|
54 |
+
def decode_base64_image(self, image_string):
|
55 |
+
base64_image = base64.b64decode(image_string)
|
56 |
+
buffer = BytesIO(base64_image)
|
57 |
+
image = Image.open(buffer)
|
58 |
+
return image
|