Update README.md
Browse files
README.md
CHANGED
@@ -23,21 +23,16 @@ pip install diffusers transformers accelerate
|
|
23 |
### Text to image
|
24 |
|
25 |
```python
|
26 |
-
from diffusers import
|
27 |
import torch
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
|
33 |
-
t2i_pipe.to("cuda")
|
34 |
|
35 |
prompt = "portrait of a young women, blue eyes, cinematic"
|
36 |
negative_prompt = "low quality, bad quality"
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
image = t2i_pipe(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0]
|
41 |
image.save("portrait.png")
|
42 |
```
|
43 |
|
@@ -59,32 +54,16 @@ original_image = original_image.resize((768, 512))
|
|
59 |
![img](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg)
|
60 |
|
61 |
```python
|
62 |
-
from diffusers import
|
63 |
import torch
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
|
68 |
-
)
|
69 |
-
pipe_prior.to("cuda")
|
70 |
-
|
71 |
-
# create img2img pipeline
|
72 |
-
pipe = KandinskyV22Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
|
73 |
-
pipe.to("cuda")
|
74 |
|
75 |
prompt = "A fantasy landscape, Cinematic lighting"
|
76 |
negative_prompt = "low quality, bad quality"
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
out = pipe(
|
81 |
-
image=original_image,
|
82 |
-
image_embeds=image_embeds,
|
83 |
-
negative_image_embeds=negative_image_embeds,
|
84 |
-
height=768,
|
85 |
-
width=768,
|
86 |
-
strength=0.3,
|
87 |
-
)
|
88 |
|
89 |
out.images[0].save("fantasy_land.png")
|
90 |
```
|
@@ -135,35 +114,31 @@ image.save("starry_cat.png")
|
|
135 |
|
136 |
### Text Guided Inpainting Generation
|
137 |
|
|
|
138 |
```python
|
139 |
-
from diffusers import
|
140 |
from diffusers.utils import load_image
|
141 |
import torch
|
142 |
import numpy as np
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
)
|
147 |
-
pipe_prior.to("cuda")
|
148 |
|
149 |
prompt = "a hat"
|
150 |
-
prior_output = pipe_prior(prompt)
|
151 |
-
|
152 |
-
pipe = KandinskyV22InpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-inpaint", torch_dtype=torch.float16)
|
153 |
-
pipe.to("cuda")
|
154 |
|
155 |
init_image = load_image(
|
156 |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
|
157 |
)
|
158 |
|
159 |
-
mask = np.
|
160 |
# Let's mask out an area above the cat's head
|
161 |
-
mask[:250, 250:-250] =
|
|
|
162 |
|
163 |
out = pipe(
|
|
|
164 |
image=init_image,
|
165 |
mask_image=mask,
|
166 |
-
**prior_output,
|
167 |
height=768,
|
168 |
width=768,
|
169 |
num_inference_steps=150,
|
@@ -174,6 +149,18 @@ image.save("cat_with_hat.png")
|
|
174 |
```
|
175 |
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat_with_hat.png)
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
### Text-to-Image Generation with ControlNet Conditioning
|
179 |
|
|
|
23 |
### Text to image
|
24 |
|
25 |
```python
|
26 |
+
from diffusers import AutoPipelineForText2Image
|
27 |
import torch
|
28 |
|
29 |
+
pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
|
30 |
+
pipe = pipe.to("cuda")
|
|
|
|
|
|
|
31 |
|
32 |
prompt = "portrait of a young women, blue eyes, cinematic"
|
33 |
negative_prompt = "low quality, bad quality"
|
34 |
|
35 |
+
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, height=768, width=768).images[0]
|
|
|
|
|
36 |
image.save("portrait.png")
|
37 |
```
|
38 |
|
|
|
54 |
![img](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg)
|
55 |
|
56 |
```python
|
57 |
+
from diffusers import AutoPipelineForImage2Image
|
58 |
import torch
|
59 |
|
60 |
+
pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
|
61 |
+
pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
prompt = "A fantasy landscape, Cinematic lighting"
|
64 |
negative_prompt = "low quality, bad quality"
|
65 |
|
66 |
+
image = pipe(prompt=prompt, image=original_image, strength=0.3, height=768, width=768).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
out.images[0].save("fantasy_land.png")
|
69 |
```
|
|
|
114 |
|
115 |
### Text Guided Inpainting Generation
|
116 |
|
117 |
+
|
118 |
```python
|
119 |
+
from diffusers import AutoPipelineForInpainting
|
120 |
from diffusers.utils import load_image
|
121 |
import torch
|
122 |
import numpy as np
|
123 |
|
124 |
+
pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16)
|
125 |
+
pipe.enable_model_cpu_offload()
|
|
|
|
|
126 |
|
127 |
prompt = "a hat"
|
|
|
|
|
|
|
|
|
128 |
|
129 |
init_image = load_image(
|
130 |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
|
131 |
)
|
132 |
|
133 |
+
mask = np.zeros((768, 768), dtype=np.float32)
|
134 |
# Let's mask out an area above the cat's head
|
135 |
+
mask[:250, 250:-250] = 1
|
136 |
+
|
137 |
|
138 |
out = pipe(
|
139 |
+
prompt=prompt,
|
140 |
image=init_image,
|
141 |
mask_image=mask,
|
|
|
142 |
height=768,
|
143 |
width=768,
|
144 |
num_inference_steps=150,
|
|
|
149 |
```
|
150 |
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat_with_hat.png)
|
151 |
|
152 |
+
__<font color=red>Breaking change on the mask input:</font>__
|
153 |
+
We introduced a breaking change for Kandinsky inpainting pipeline in the following pull request: https://github.com/huggingface/diffusers/pull/4207. Previously we accepted a mask format where black pixels represent the masked-out area. We have changed to use white pixels to represent masks instead in order to have a unified mask format across all our pipelines.
|
154 |
+
Please upgrade your inpainting code to follow the above. If you are using Kandinsky Inpaint in production. You now need to change the mask to:
|
155 |
+
|
156 |
+
```python
|
157 |
+
# For PIL input
|
158 |
+
import PIL.ImageOps
|
159 |
+
mask = PIL.ImageOps.invert(mask)
|
160 |
+
|
161 |
+
# For PyTorch and Numpy input
|
162 |
+
mask = 1 - mask
|
163 |
+
```
|
164 |
|
165 |
### Text-to-Image Generation with ControlNet Conditioning
|
166 |
|