8 bit bge-reranker-v2-m3. !pip install "transformers==4.35" "bitsandbytes" "optimum" "datasets==2.13.0" "peft==0.9.0" "accelerate==0.27.1" "bitsandbytes==0.40.2" "trl==0.4.7" "safetensors>=0.3.1" "tiktoken" # Load and compute scores with the quantized model ``` import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig def load_and_compute_scores_with_quantized_model(model_path): tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) def compute_score(pairs): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): outputs = model(**inputs) return outputs.logits scores = compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print("Scores:", scores) quantized_model_path = "quantized_bge_reranker_v2_m3" load_and_compute_scores_with_quantized_model(quantized_model_path) ```