base model
Browse files- README.md +38 -0
- bpe_encoder.bin +3 -0
- config.json +30 -0
- merges.txt +0 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +4 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags: deberta-v1
|
| 4 |
+
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
| 5 |
+
license: mit
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
| 9 |
+
|
| 10 |
+
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
|
| 11 |
+
|
| 12 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
#### Fine-tuning on NLU tasks
|
| 16 |
+
|
| 17 |
+
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
|
| 18 |
+
|
| 19 |
+
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|
| 20 |
+
|-------------------|-----------|-----------|--------|
|
| 21 |
+
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
|
| 22 |
+
| XLNet-Large | -/- | -/80.2 | 86.8 |
|
| 23 |
+
| **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 |
|
| 24 |
+
|
| 25 |
+
### Citation
|
| 26 |
+
|
| 27 |
+
If you find DeBERTa useful for your work, please cite the following paper:
|
| 28 |
+
|
| 29 |
+
``` latex
|
| 30 |
+
@inproceedings{
|
| 31 |
+
he2021deberta,
|
| 32 |
+
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
|
| 33 |
+
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
| 34 |
+
booktitle={International Conference on Learning Representations},
|
| 35 |
+
year={2021},
|
| 36 |
+
url={https://openreview.net/forum?id=XPZIaotutsD}
|
| 37 |
+
}
|
| 38 |
+
```
|
bpe_encoder.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7c6f9eecb461c01e09c00656ccf3e27944b9e74bfe29e51632b13d3cd9d6c8e
|
| 3 |
+
size 3917897
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DebertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"hidden_act": "gelu",
|
| 7 |
+
"hidden_dropout_prob": 0.1,
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 3072,
|
| 11 |
+
"layer_norm_eps": 1e-07,
|
| 12 |
+
"max_position_embeddings": 512,
|
| 13 |
+
"max_relative_positions": -1,
|
| 14 |
+
"model_type": "deberta",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 12,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"pooler_dropout": 0,
|
| 19 |
+
"pooler_hidden_act": "gelu",
|
| 20 |
+
"pooler_hidden_size": 768,
|
| 21 |
+
"pos_att_type": [
|
| 22 |
+
"c2p",
|
| 23 |
+
"p2c"
|
| 24 |
+
],
|
| 25 |
+
"position_biased_input": false,
|
| 26 |
+
"relative_attention": true,
|
| 27 |
+
"transformers_version": "4.10.0.dev0",
|
| 28 |
+
"type_vocab_size": 0,
|
| 29 |
+
"vocab_size": 50265
|
| 30 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tf_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68a9b33a7a94717d8d3ccde814f479185ce9257f8230ec5c2ce1aeadfc96407b
|
| 3 |
+
size 554669920
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_lower_case": false,
|
| 3 |
+
"vocab_type": "gpt2"
|
| 4 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|