--- license: apache-2.0 language: - ru - en base_model: - Qwen/Qwen2.5-7B --- This is an instruction following model (based on Qwen2.5-7B base) optimized for Russian language. The model was trained in two phases: SFT (training data composition is similar to kolibri-mistral-0427) and RLHF. Current RLHF pipeline leads to degradation on IFEval, but the overall 'vibe' of the model improves significantly. I am currently investigating the causes of this degradation and exploring methods to further enhance instruction-following capabilities. The model uses ChatML template. Adding a system prompt will likely improve the model's performance on your tasks (experiment with it). ## Instruction following evals The model was tested using the following benchmarks: - [ruIFEval](https://github.com/NLP-Core-Team/ruIFEval) - [ifeval](https://github.com/google-research/google-research/tree/master/instruction_following_eval) | Eval name |Strict Value| Loose Value |---------------------------------|----|----| |Avg. |*43.00*|*49.17*| |ifeval-prompt-level |38.63|46.21| |ifeval-instruction-level |51.20|57.5| |ru-ifeval-prompt-level |35.30|40.48| |ru-ifeval-instruction-level |46.88|52.52| ## Russian LLM Arena (proxy eval via JINA) The table below approximates [Russian LLM Arena](https://huggingface.co/spaces/Vikhrmodels/arenahardlb) scores using the [JINA Judge model](https://huggingface.co/kaleinaNyan/jina-v3-rullmarena-judge-041024). Take it with a grain of salt. | Model Name | Score | 95% CI | Avg Tokens | |--------------------------------------------------|--------|---------------------|------------| | gpt-4-1106-preview | 82.8 | (-2.8, 2.6) | 541 | | gpt-4o-mini | 75.3 | (-2.2, 2.8) | 448 | | qwen-2.5-72b-it | 73.1 | (-3.0, 3.1) | 557 | | gemma-2-9b-it-sppo-iter3 | 70.6 | (-3.7, 3.0) | 509 | | gemma-2-27b-it | 68.7 | (-2.9, 3.8) | 472 | | t-lite-instruct-0.1 | 67.5 | (-4.2, 2.7) | 810 | | gemma-2-9b-it | 67.0 | (-3.0, 3.8) | 459 | | suzume-llama-3-8B-multilingual-orpo-borda-half | 62.4 | (-3.0, 3.3) | 682 | | glm-4-9b-chat | 61.5 | (-3.9, 3.3) | 568 | | phi-3-medium-4k-instruct | 60.4 | (-3.8, 3.6) | 566 | | sfr-iterative-dpo-llama-3-8b-r | 57.2 | (-3.8, 4.0) | 516 | | **kolibri-qwen2.5-7b-060225-rlhf-1** | 55.4 | (-3.1, 4.4) | 383 | | c4ai-command-r-v01 | 55.0 | (-3.7, 4.4) | 529 | | suzume-llama-3-8b-multilingual | 51.9 | (-3.1, 3.4) | 641 | | mistral-nemo-instruct-2407 | 51.9 | (-3.0, 3.0) | 403 | | yandex_gpt_pro | 50.3 | (-3.5, 3.0) | 345 | | gpt-3.5-turbo-0125 | 50.0 | (0.0, 0.0) | 220 | | hermes-2-theta-llama-3-8b | 49.3 | (-3.2, 3.7) | 485 | | starling-lm-7b-beta | 48.3 | (-3.7, 3.9) | 629 | | llama-3-8b-saiga-suzume-ties | 47.9 | (-3.9, 5.0) | 763 | | llama-3-smaug-8b | 47.6 | (-4.3, 2.9) | 524 | | **vikhr-it-5.4-fp16-orpo-v2** | 46.8 | (-2.4, 2.2) | 379 | | aya-23-8b | 46.1 | (-3.3, 3.6) | 554 | | **saiga_llama3_8b_v6** | 44.8 | (-2.9, 3.2) | 471 | | qwen2-7b-instruct | 43.6 | (-3.5, 3.0) | 340 | | vikhr-it-5.2-fp16-cp | 43.6 | (-3.6, 3.3) | 543 | | openchat-3.5-0106 | 42.8 | (-2.5, 3.8) | 492 | | **kolibri-mistral-0427-upd** | 42.3 | (-4.1, 4.0) | 551 | | paralex-llama-3-8b-sft | 41.8 | (-3.7, 3.9) | 688 | | llama-3-instruct-8b-sppo-iter3 | 41.7 | (-4.0, 3.6) | 502 | | gpt-3.5-turbo-1106 | 41.5 | (-2.7, 2.5) | 191 | | mistral-7b-instruct-v0.3 | 41.1 | (-4.1, 2.9) | 469 | | gigachat_pro | 40.9 | (-3.2, 2.8) | 294 | | openchat-3.6-8b-20240522 | 39.1 | (-2.9, 3.8) | 428 | | vikhr-it-5.3-fp16-32k | 38.8 | (-3.2, 3.3) | 519 | | hermes-2-pro-llama-3-8b | 38.4 | (-3.9, 3.9) | 463 | | kolibri-vikhr-mistral-0427 | 34.5 | (-2.9, 3.1) | 489 | | vikhr-it-5.3-fp16 | 33.5 | (-3.0, 3.8) | 523 | | llama-3-instruct-8b-simpo | 32.7 | (-3.2, 2.7) | 417 | | meta-llama-3-8b-instruct | 32.1 | (-3.6, 4.2) | 450 | | neural-chat-7b-v3-3 | 25.9 | (-3.1, 3.2) | 927 | | gigachat_lite | 25.4 | (-3.5, 2.7) | 276 | | snorkel-mistral-pairrm-dpo | 10.3 | (-2.3, 2.6) | 773 | | storm-7b | 3.7 | (-1.9, 1.7) | 419 |