kalebNim commited on
Commit
ab5a207
·
1 Parent(s): e1de1b8

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 212.66 +/- 86.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9467877c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9467877ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9467877d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9467877dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f9467877e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f9467877ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9467877f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f946787e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f946787e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f946787e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f946787e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f946787e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9467879210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673838571359231755, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbQgr0KV325vSH/uaYDDrVKsnM7CvETOQAAgD8AAIA/5udNvfboFLpWxSI8JnWNO18ahjulijU8AACAPwAAgD+AOtw9+/OKPdrDC76mzja+tiyRPJTqDb4AAAAAAAAAAM2gvTv2lGW6uiKFuyVFnzhYI2U6ZAoSOgAAgD8AAIA/812nPpK5Qz7zRQm+EJh4vvaIxz3BbTO8AAAAAAAAAACgVGU+cUFSPDhPuL3yivC99sO1PgKboj4AAIA/AACAP+38gz69FB29bsUFu2DRtTnr/Yq+Ml00OgAAgD8AAIA/mqNTvVLAzrmO6KI75kYdN+fHjTg6wr66AACAPwAAgD/gU2I+mz+YvJAHbDvRvZa5Lr0OvlZ+b7oAAIA/AACAP9qKkD6kMDW7lnoovOPgSLlTEG68ej6OOQAAgD8AAIA/MxfnO8MJXLom0O4594ElNhk0YDoM5gm5AACAPwAAgD8AILG89iBGuqJhw7rAfhc49WF1O4h/VDkAAIA/AACAP2M+tj4vyTY9/WISvssqor7jiPg8YhK2PQAAAAAAAAAAmlMwPHFECLtHpqK73UNyPHMFsjsT3VW9AACAPwAAgD+amXu99sgiuvZvUDt6Nue2+gWgu2vOcroAAIA/AACAPwAw6LopjGa6i2xruzfKq7XsgR+7hfmGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI41C/C1uYV0CUhpRSlIwBbJRN6AOMAXSUR0CDknz+WGATdX2UKGgGaAloD0MIhqsDIG5KYUCUhpRSlGgVTegDaBZHQIOY4CSzPbB1fZQoaAZoCWgPQwgPCd/7m4diQJSGlFKUaBVN6ANoFkdAg5vP2GqPwXV9lChoBmgJaA9DCIoGKXiKXmNAlIaUUpRoFU3oA2gWR0CDoQ31BdD6dX2UKGgGaAloD0MIT83lBkNnXUCUhpRSlGgVTegDaBZHQIOrTMPjGT91fZQoaAZoCWgPQwgxPzc0ZepeQJSGlFKUaBVN6ANoFkdAg7HobXHzYnV9lChoBmgJaA9DCNnpB3URcmBAlIaUUpRoFU3oA2gWR0CDxD6rNnoQdX2UKGgGaAloD0MIborHRbUWYUCUhpRSlGgVTegDaBZHQIPF7ghr30x1fZQoaAZoCWgPQwiDFadai41hQJSGlFKUaBVN6ANoFkdAg/Esmv4dqHV9lChoBmgJaA9DCB7dCIuKKmNAlIaUUpRoFU3oA2gWR0CEBGahHskZdX2UKGgGaAloD0MIIVnABG7fYUCUhpRSlGgVTegDaBZHQIQGLM7lq8F1fZQoaAZoCWgPQwgvqG+Z0xFHQJSGlFKUaBVLvGgWR0CECHBbfP5YdX2UKGgGaAloD0MIiA6BI4GEYUCUhpRSlGgVTegDaBZHQIQKe5BkZrJ1fZQoaAZoCWgPQwiug4O9CfdgQJSGlFKUaBVN6ANoFkdAhBMAtvn8sXV9lChoBmgJaA9DCBk4oKUrGFJAlIaUUpRoFU3oA2gWR0CEIGewLVnVdX2UKGgGaAloD0MIboWwGkt5WUCUhpRSlGgVTegDaBZHQIQkhN9H+ZR1fZQoaAZoCWgPQwgFNBE2PEVYQJSGlFKUaBVN6ANoFkdAhCuJC8e0X3V9lChoBmgJaA9DCGbAWUqWRVxAlIaUUpRoFU3oA2gWR0CELXl90A93dX2UKGgGaAloD0MIxvgwe9mhWECUhpRSlGgVTegDaBZHQIQzEdaMaS91fZQoaAZoCWgPQwg1Jy8yAalSQJSGlFKUaBVN6ANoFkdAhDWrsSkCWHV9lChoBmgJaA9DCDFbsirCJSJAlIaUUpRoFU3oA2gWR0CEOlBSk0rLdX2UKGgGaAloD0MIq3gj88jdXECUhpRSlGgVTegDaBZHQIRDhEBsANp1fZQoaAZoCWgPQwj5nSYzXlFnQJSGlFKUaBVNMgNoFkdAhEb5GSZBs3V9lChoBmgJaA9DCPKZ7J+nuFRAlIaUUpRoFU3oA2gWR0CESa8FpwjudX2UKGgGaAloD0MIMj1hiQc3YECUhpRSlGgVTegDaBZHQIRZSnR9gF51fZQoaAZoCWgPQwhYHw99d8lkQJSGlFKUaBVNsgNoFkdAhJYlN1yNoHV9lChoBmgJaA9DCKeyKOyiXVtAlIaUUpRoFU3oA2gWR0CEmPLkjopydX2UKGgGaAloD0MIAi7IluWnYkCUhpRSlGgVTegDaBZHQISavIOpbUx1fZQoaAZoCWgPQwjECUynddxfQJSGlFKUaBVN6ANoFkdAhJ65B1LamHV9lChoBmgJaA9DCMYUrHG2b2VAlIaUUpRoFU3oA2gWR0CEpyl54W1udX2UKGgGaAloD0MItTS3QlgtWkCUhpRSlGgVTegDaBZHQIS0gVM23rl1fZQoaAZoCWgPQwjjUL8LW1pSQJSGlFKUaBVN6ANoFkdAhLiwSi/O+3V9lChoBmgJaA9DCEPKT6p98WBAlIaUUpRoFU3oA2gWR0CEv5GsFMZhdX2UKGgGaAloD0MIrkUL0LYFWUCUhpRSlGgVTegDaBZHQITBirHU+cJ1fZQoaAZoCWgPQwj84ee/B45qQJSGlFKUaBVNQQFoFkdAhMJJQk5ZKXV9lChoBmgJaA9DCKOx9ne2p1tAlIaUUpRoFU3oA2gWR0CExtKe05U+dX2UKGgGaAloD0MI9DRgkPQuWkCUhpRSlGgVTegDaBZHQITJP2Cdz4l1fZQoaAZoCWgPQwi05sdfWntSQJSGlFKUaBVN6ANoFkdAhM2iYTj//HV9lChoBmgJaA9DCIPDCyLSVWBAlIaUUpRoFU3oA2gWR0CE1kI1tO2zdX2UKGgGaAloD0MIdt8xPPaFY0CUhpRSlGgVTegDaBZHQITZaVv/BFd1fZQoaAZoCWgPQwj8Gd6swX1LQJSGlFKUaBVLx2gWR0CE2d/vv0AcdX2UKGgGaAloD0MIkDLiAtD8ZUCUhpRSlGgVTegDaBZHQITbuHP/rB11fZQoaAZoCWgPQwjo9LwbiylkQJSGlFKUaBVN6ANoFkdAhOo5lOGj9HV9lChoBmgJaA9DCEG7Q4oB8g3AlIaUUpRoFUvJaBZHQITt0ir1dxB1fZQoaAZoCWgPQwiymxn96FhhQJSGlFKUaBVN6ANoFkdAhSPZVn27F3V9lChoBmgJaA9DCFJIMqt3plpAlIaUUpRoFU3oA2gWR0CFJk1gH/tIdX2UKGgGaAloD0MIfCk8aPbSYECUhpRSlGgVTegDaBZHQIUnu4y44Id1fZQoaAZoCWgPQwiGqphKP3NjQJSGlFKUaBVN6ANoFkdAhTMgOavzOHV9lChoBmgJaA9DCCQnE7cKF19AlIaUUpRoFU3oA2gWR0CFQOtapxWDdX2UKGgGaAloD0MIzQaZZOQvX0CUhpRSlGgVTegDaBZHQIVFHmT1TR91fZQoaAZoCWgPQwipwp/hzfIwQJSGlFKUaBVLu2gWR0CFSIKkVN5/dX2UKGgGaAloD0MIayqLwi4sXkCUhpRSlGgVTegDaBZHQIVMA73fygB1fZQoaAZoCWgPQwhV2XdFcFBgQJSGlFKUaBVN6ANoFkdAhU3//FR51XV9lChoBmgJaA9DCP6Y1qYxaWBAlIaUUpRoFU3oA2gWR0CFTsHfuTibdX2UKGgGaAloD0MIX0NwXMa/T0CUhpRSlGgVS6xoFkdAhVPJwjt5U3V9lChoBmgJaA9DCIzc09UdomJAlIaUUpRoFU3oA2gWR0CFVfCrLhaUdX2UKGgGaAloD0MI43FRLaInZECUhpRSlGgVTegDaBZHQIVaUuYhMal1fZQoaAZoCWgPQwjn+6nx0l0XQJSGlFKUaBVL1mgWR0CFXkBjFyaNdX2UKGgGaAloD0MIqaROQBMBI8CUhpRSlGgVS8ZoFkdAhV+yHmA9V3V9lChoBmgJaA9DCMbgYdo3S2BAlIaUUpRoFU3oA2gWR0CFYxhc7hegdX2UKGgGaAloD0MIyeNp+YH1YUCUhpRSlGgVTegDaBZHQIVmNJe3QUp1fZQoaAZoCWgPQwh88xsmGnwswJSGlFKUaBVLuWgWR0CFZ5mEGqxUdX2UKGgGaAloD0MIMSWS6OVmY0CUhpRSlGgVTegDaBZHQIVoUCA+Y+l1fZQoaAZoCWgPQwiSPq2iPzhdQJSGlFKUaBVN6ANoFkdAhXbbxVhkRXV9lChoBmgJaA9DCGe610l9gV1AlIaUUpRoFU3oA2gWR0CFevLzPKMedX2UKGgGaAloD0MIO3KkMzD3YUCUhpRSlGgVTegDaBZHQIWzjLlmvnt1fZQoaAZoCWgPQwhdo+VAD49gQJSGlFKUaBVN6ANoFkdAhbZZZKWcBnV9lChoBmgJaA9DCKj+QSRDRmBAlIaUUpRoFU3oA2gWR0CFuBoePq9odX2UKGgGaAloD0MIWTUIc7uxYkCUhpRSlGgVTegDaBZHQIXaF7SiM5x1fZQoaAZoCWgPQwjYZmMl5gleQJSGlFKUaBVN6ANoFkdAheUqCHymRHV9lChoBmgJaA9DCKG+ZU4XwWFAlIaUUpRoFU3oA2gWR0CF5iMhHLA6dX2UKGgGaAloD0MIsfhNYaWyYUCUhpRSlGgVTegDaBZHQIXsj0OEug91fZQoaAZoCWgPQwhupGyRtOFhQJSGlFKUaBVN6ANoFkdAhfT+PRzBAXV9lChoBmgJaA9DCJz6QPJOJGFAlIaUUpRoFU3oA2gWR0CF+h1hb4ahdX2UKGgGaAloD0MI88e0Ng1lZUCUhpRSlGgVTegDaBZHQIX73ppvgm91fZQoaAZoCWgPQwgO2xZlNtFWQJSGlFKUaBVN6ANoFkdAhf/kmQbMo3V9lChoBmgJaA9DCPMcke9SPjnAlIaUUpRoFUunaBZHQIYBA+0PYnR1fZQoaAZoCWgPQwigiEUMOyJgQJSGlFKUaBVN6ANoFkdAhgOon0Cih3V9lChoBmgJaA9DCL69a9CX3l9AlIaUUpRoFU3oA2gWR0CGBU9V3ljmdX2UKGgGaAloD0MIPlqcMczkWUCUhpRSlGgVTegDaBZHQIYGEyFfzBh1fZQoaAZoCWgPQwgJFoczvzxAQJSGlFKUaBVLyGgWR0CGFA938n/ldX2UKGgGaAloD0MIPQrXo3CnT0CUhpRSlGgVTegDaBZHQIYUNj7Q9id1fZQoaAZoCWgPQwjO4zCYvw5JQJSGlFKUaBVLm2gWR0CGFGOcUdq+dX2UKGgGaAloD0MIg6eQK/UKYkCUhpRSlGgVTegDaBZHQIYX3okiUxF1fZQoaAZoCWgPQwjEsMOY9MBiQJSGlFKUaBVN6ANoFkdAhlClWGRFJHV9lChoBmgJaA9DCG9/LhoycGJAlIaUUpRoFU3oA2gWR0CGU3gVGkN4dX2UKGgGaAloD0MIeh1xyAYwXECUhpRSlGgVTegDaBZHQIZVHkT6BRR1fZQoaAZoCWgPQwhG7BNAMa5fQJSGlFKUaBVN6ANoFkdAhnjvZqVQh3V9lChoBmgJaA9DCMnLmlhg+2BAlIaUUpRoFU3oA2gWR0CGg/yxzJZGdX2UKGgGaAloD0MIJqjhW1jbYUCUhpRSlGgVTegDaBZHQIaE9jkMkQh1fZQoaAZoCWgPQwjO/GoOEBdaQJSGlFKUaBVN6ANoFkdAhpPz8pCrtHV9lChoBmgJaA9DCKW9wRemFmBAlIaUUpRoFU3oA2gWR0CGmtTtLL6ldX2UKGgGaAloD0MIRMTNqWSbY0CUhpRSlGgVTegDaBZHQIadP1lGwzN1fZQoaAZoCWgPQwgW9rTD3yphQJSGlFKUaBVN6ANoFkdAhqQp5mh/RXV9lChoBmgJaA9DCDC5UWQtpmNAlIaUUpRoFU3oA2gWR0CGp7rC3w1BdX2UKGgGaAloD0MIqRd8mpOZVUCUhpRSlGgVTegDaBZHQIarOwV0tAd1fZQoaAZoCWgPQwiA1ZEjHUlhQJSGlFKUaBVN6ANoFkdAhr38d5prUXV9lChoBmgJaA9DCPgW1o33F2JAlIaUUpRoFU3oA2gWR0CGvim8dxQ0dX2UKGgGaAloD0MITn0geWcXY0CUhpRSlGgVTegDaBZHQIa+YoRZlnR1fZQoaAZoCWgPQwjK+WLvxZhiQJSGlFKUaBVN6ANoFkdAhsHw1BMSK3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7213ca8bf46f1e99446e3c8d78fd9ac75c0f9c92c657739d94489d3ce615340b
3
+ size 147410
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9467877c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9467877ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9467877d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9467877dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9467877e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9467877ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9467877f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f946787e040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f946787e0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f946787e160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f946787e1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f946787e280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9467879210>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 507904,
47
+ "_total_timesteps": 500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673838571359231755,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbQgr0KV325vSH/uaYDDrVKsnM7CvETOQAAgD8AAIA/5udNvfboFLpWxSI8JnWNO18ahjulijU8AACAPwAAgD+AOtw9+/OKPdrDC76mzja+tiyRPJTqDb4AAAAAAAAAAM2gvTv2lGW6uiKFuyVFnzhYI2U6ZAoSOgAAgD8AAIA/812nPpK5Qz7zRQm+EJh4vvaIxz3BbTO8AAAAAAAAAACgVGU+cUFSPDhPuL3yivC99sO1PgKboj4AAIA/AACAP+38gz69FB29bsUFu2DRtTnr/Yq+Ml00OgAAgD8AAIA/mqNTvVLAzrmO6KI75kYdN+fHjTg6wr66AACAPwAAgD/gU2I+mz+YvJAHbDvRvZa5Lr0OvlZ+b7oAAIA/AACAP9qKkD6kMDW7lnoovOPgSLlTEG68ej6OOQAAgD8AAIA/MxfnO8MJXLom0O4594ElNhk0YDoM5gm5AACAPwAAgD8AILG89iBGuqJhw7rAfhc49WF1O4h/VDkAAIA/AACAP2M+tj4vyTY9/WISvssqor7jiPg8YhK2PQAAAAAAAAAAmlMwPHFECLtHpqK73UNyPHMFsjsT3VW9AACAPwAAgD+amXu99sgiuvZvUDt6Nue2+gWgu2vOcroAAIA/AACAPwAw6LopjGa6i2xruzfKq7XsgR+7hfmGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI41C/C1uYV0CUhpRSlIwBbJRN6AOMAXSUR0CDknz+WGATdX2UKGgGaAloD0MIhqsDIG5KYUCUhpRSlGgVTegDaBZHQIOY4CSzPbB1fZQoaAZoCWgPQwgPCd/7m4diQJSGlFKUaBVN6ANoFkdAg5vP2GqPwXV9lChoBmgJaA9DCIoGKXiKXmNAlIaUUpRoFU3oA2gWR0CDoQ31BdD6dX2UKGgGaAloD0MIT83lBkNnXUCUhpRSlGgVTegDaBZHQIOrTMPjGT91fZQoaAZoCWgPQwgxPzc0ZepeQJSGlFKUaBVN6ANoFkdAg7HobXHzYnV9lChoBmgJaA9DCNnpB3URcmBAlIaUUpRoFU3oA2gWR0CDxD6rNnoQdX2UKGgGaAloD0MIborHRbUWYUCUhpRSlGgVTegDaBZHQIPF7ghr30x1fZQoaAZoCWgPQwiDFadai41hQJSGlFKUaBVN6ANoFkdAg/Esmv4dqHV9lChoBmgJaA9DCB7dCIuKKmNAlIaUUpRoFU3oA2gWR0CEBGahHskZdX2UKGgGaAloD0MIIVnABG7fYUCUhpRSlGgVTegDaBZHQIQGLM7lq8F1fZQoaAZoCWgPQwgvqG+Z0xFHQJSGlFKUaBVLvGgWR0CECHBbfP5YdX2UKGgGaAloD0MIiA6BI4GEYUCUhpRSlGgVTegDaBZHQIQKe5BkZrJ1fZQoaAZoCWgPQwiug4O9CfdgQJSGlFKUaBVN6ANoFkdAhBMAtvn8sXV9lChoBmgJaA9DCBk4oKUrGFJAlIaUUpRoFU3oA2gWR0CEIGewLVnVdX2UKGgGaAloD0MIboWwGkt5WUCUhpRSlGgVTegDaBZHQIQkhN9H+ZR1fZQoaAZoCWgPQwgFNBE2PEVYQJSGlFKUaBVN6ANoFkdAhCuJC8e0X3V9lChoBmgJaA9DCGbAWUqWRVxAlIaUUpRoFU3oA2gWR0CELXl90A93dX2UKGgGaAloD0MIxvgwe9mhWECUhpRSlGgVTegDaBZHQIQzEdaMaS91fZQoaAZoCWgPQwg1Jy8yAalSQJSGlFKUaBVN6ANoFkdAhDWrsSkCWHV9lChoBmgJaA9DCDFbsirCJSJAlIaUUpRoFU3oA2gWR0CEOlBSk0rLdX2UKGgGaAloD0MIq3gj88jdXECUhpRSlGgVTegDaBZHQIRDhEBsANp1fZQoaAZoCWgPQwj5nSYzXlFnQJSGlFKUaBVNMgNoFkdAhEb5GSZBs3V9lChoBmgJaA9DCPKZ7J+nuFRAlIaUUpRoFU3oA2gWR0CESa8FpwjudX2UKGgGaAloD0MIMj1hiQc3YECUhpRSlGgVTegDaBZHQIRZSnR9gF51fZQoaAZoCWgPQwhYHw99d8lkQJSGlFKUaBVNsgNoFkdAhJYlN1yNoHV9lChoBmgJaA9DCKeyKOyiXVtAlIaUUpRoFU3oA2gWR0CEmPLkjopydX2UKGgGaAloD0MIAi7IluWnYkCUhpRSlGgVTegDaBZHQISavIOpbUx1fZQoaAZoCWgPQwjECUynddxfQJSGlFKUaBVN6ANoFkdAhJ65B1LamHV9lChoBmgJaA9DCMYUrHG2b2VAlIaUUpRoFU3oA2gWR0CEpyl54W1udX2UKGgGaAloD0MItTS3QlgtWkCUhpRSlGgVTegDaBZHQIS0gVM23rl1fZQoaAZoCWgPQwjjUL8LW1pSQJSGlFKUaBVN6ANoFkdAhLiwSi/O+3V9lChoBmgJaA9DCEPKT6p98WBAlIaUUpRoFU3oA2gWR0CEv5GsFMZhdX2UKGgGaAloD0MIrkUL0LYFWUCUhpRSlGgVTegDaBZHQITBirHU+cJ1fZQoaAZoCWgPQwj84ee/B45qQJSGlFKUaBVNQQFoFkdAhMJJQk5ZKXV9lChoBmgJaA9DCKOx9ne2p1tAlIaUUpRoFU3oA2gWR0CExtKe05U+dX2UKGgGaAloD0MI9DRgkPQuWkCUhpRSlGgVTegDaBZHQITJP2Cdz4l1fZQoaAZoCWgPQwi05sdfWntSQJSGlFKUaBVN6ANoFkdAhM2iYTj//HV9lChoBmgJaA9DCIPDCyLSVWBAlIaUUpRoFU3oA2gWR0CE1kI1tO2zdX2UKGgGaAloD0MIdt8xPPaFY0CUhpRSlGgVTegDaBZHQITZaVv/BFd1fZQoaAZoCWgPQwj8Gd6swX1LQJSGlFKUaBVLx2gWR0CE2d/vv0AcdX2UKGgGaAloD0MIkDLiAtD8ZUCUhpRSlGgVTegDaBZHQITbuHP/rB11fZQoaAZoCWgPQwjo9LwbiylkQJSGlFKUaBVN6ANoFkdAhOo5lOGj9HV9lChoBmgJaA9DCEG7Q4oB8g3AlIaUUpRoFUvJaBZHQITt0ir1dxB1fZQoaAZoCWgPQwiymxn96FhhQJSGlFKUaBVN6ANoFkdAhSPZVn27F3V9lChoBmgJaA9DCFJIMqt3plpAlIaUUpRoFU3oA2gWR0CFJk1gH/tIdX2UKGgGaAloD0MIfCk8aPbSYECUhpRSlGgVTegDaBZHQIUnu4y44Id1fZQoaAZoCWgPQwiGqphKP3NjQJSGlFKUaBVN6ANoFkdAhTMgOavzOHV9lChoBmgJaA9DCCQnE7cKF19AlIaUUpRoFU3oA2gWR0CFQOtapxWDdX2UKGgGaAloD0MIzQaZZOQvX0CUhpRSlGgVTegDaBZHQIVFHmT1TR91fZQoaAZoCWgPQwipwp/hzfIwQJSGlFKUaBVLu2gWR0CFSIKkVN5/dX2UKGgGaAloD0MIayqLwi4sXkCUhpRSlGgVTegDaBZHQIVMA73fygB1fZQoaAZoCWgPQwhV2XdFcFBgQJSGlFKUaBVN6ANoFkdAhU3//FR51XV9lChoBmgJaA9DCP6Y1qYxaWBAlIaUUpRoFU3oA2gWR0CFTsHfuTibdX2UKGgGaAloD0MIX0NwXMa/T0CUhpRSlGgVS6xoFkdAhVPJwjt5U3V9lChoBmgJaA9DCIzc09UdomJAlIaUUpRoFU3oA2gWR0CFVfCrLhaUdX2UKGgGaAloD0MI43FRLaInZECUhpRSlGgVTegDaBZHQIVaUuYhMal1fZQoaAZoCWgPQwjn+6nx0l0XQJSGlFKUaBVL1mgWR0CFXkBjFyaNdX2UKGgGaAloD0MIqaROQBMBI8CUhpRSlGgVS8ZoFkdAhV+yHmA9V3V9lChoBmgJaA9DCMbgYdo3S2BAlIaUUpRoFU3oA2gWR0CFYxhc7hegdX2UKGgGaAloD0MIyeNp+YH1YUCUhpRSlGgVTegDaBZHQIVmNJe3QUp1fZQoaAZoCWgPQwh88xsmGnwswJSGlFKUaBVLuWgWR0CFZ5mEGqxUdX2UKGgGaAloD0MIMSWS6OVmY0CUhpRSlGgVTegDaBZHQIVoUCA+Y+l1fZQoaAZoCWgPQwiSPq2iPzhdQJSGlFKUaBVN6ANoFkdAhXbbxVhkRXV9lChoBmgJaA9DCGe610l9gV1AlIaUUpRoFU3oA2gWR0CFevLzPKMedX2UKGgGaAloD0MIO3KkMzD3YUCUhpRSlGgVTegDaBZHQIWzjLlmvnt1fZQoaAZoCWgPQwhdo+VAD49gQJSGlFKUaBVN6ANoFkdAhbZZZKWcBnV9lChoBmgJaA9DCKj+QSRDRmBAlIaUUpRoFU3oA2gWR0CFuBoePq9odX2UKGgGaAloD0MIWTUIc7uxYkCUhpRSlGgVTegDaBZHQIXaF7SiM5x1fZQoaAZoCWgPQwjYZmMl5gleQJSGlFKUaBVN6ANoFkdAheUqCHymRHV9lChoBmgJaA9DCKG+ZU4XwWFAlIaUUpRoFU3oA2gWR0CF5iMhHLA6dX2UKGgGaAloD0MIsfhNYaWyYUCUhpRSlGgVTegDaBZHQIXsj0OEug91fZQoaAZoCWgPQwhupGyRtOFhQJSGlFKUaBVN6ANoFkdAhfT+PRzBAXV9lChoBmgJaA9DCJz6QPJOJGFAlIaUUpRoFU3oA2gWR0CF+h1hb4ahdX2UKGgGaAloD0MI88e0Ng1lZUCUhpRSlGgVTegDaBZHQIX73ppvgm91fZQoaAZoCWgPQwgO2xZlNtFWQJSGlFKUaBVN6ANoFkdAhf/kmQbMo3V9lChoBmgJaA9DCPMcke9SPjnAlIaUUpRoFUunaBZHQIYBA+0PYnR1fZQoaAZoCWgPQwigiEUMOyJgQJSGlFKUaBVN6ANoFkdAhgOon0Cih3V9lChoBmgJaA9DCL69a9CX3l9AlIaUUpRoFU3oA2gWR0CGBU9V3ljmdX2UKGgGaAloD0MIPlqcMczkWUCUhpRSlGgVTegDaBZHQIYGEyFfzBh1fZQoaAZoCWgPQwgJFoczvzxAQJSGlFKUaBVLyGgWR0CGFA938n/ldX2UKGgGaAloD0MIPQrXo3CnT0CUhpRSlGgVTegDaBZHQIYUNj7Q9id1fZQoaAZoCWgPQwjO4zCYvw5JQJSGlFKUaBVLm2gWR0CGFGOcUdq+dX2UKGgGaAloD0MIg6eQK/UKYkCUhpRSlGgVTegDaBZHQIYX3okiUxF1fZQoaAZoCWgPQwjEsMOY9MBiQJSGlFKUaBVN6ANoFkdAhlClWGRFJHV9lChoBmgJaA9DCG9/LhoycGJAlIaUUpRoFU3oA2gWR0CGU3gVGkN4dX2UKGgGaAloD0MIeh1xyAYwXECUhpRSlGgVTegDaBZHQIZVHkT6BRR1fZQoaAZoCWgPQwhG7BNAMa5fQJSGlFKUaBVN6ANoFkdAhnjvZqVQh3V9lChoBmgJaA9DCMnLmlhg+2BAlIaUUpRoFU3oA2gWR0CGg/yxzJZGdX2UKGgGaAloD0MIJqjhW1jbYUCUhpRSlGgVTegDaBZHQIaE9jkMkQh1fZQoaAZoCWgPQwjO/GoOEBdaQJSGlFKUaBVN6ANoFkdAhpPz8pCrtHV9lChoBmgJaA9DCKW9wRemFmBAlIaUUpRoFU3oA2gWR0CGmtTtLL6ldX2UKGgGaAloD0MIRMTNqWSbY0CUhpRSlGgVTegDaBZHQIadP1lGwzN1fZQoaAZoCWgPQwgW9rTD3yphQJSGlFKUaBVN6ANoFkdAhqQp5mh/RXV9lChoBmgJaA9DCDC5UWQtpmNAlIaUUpRoFU3oA2gWR0CGp7rC3w1BdX2UKGgGaAloD0MIqRd8mpOZVUCUhpRSlGgVTegDaBZHQIarOwV0tAd1fZQoaAZoCWgPQwiA1ZEjHUlhQJSGlFKUaBVN6ANoFkdAhr38d5prUXV9lChoBmgJaA9DCPgW1o33F2JAlIaUUpRoFU3oA2gWR0CGvim8dxQ0dX2UKGgGaAloD0MITn0geWcXY0CUhpRSlGgVTegDaBZHQIa+YoRZlnR1fZQoaAZoCWgPQwjK+WLvxZhiQJSGlFKUaBVN6ANoFkdAhsHw1BMSK3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 124,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c89363fa5369606111ebc8265b000a776a1856442d9d0b399b53e666c886eceb
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91a37a509d5eff5e8088872d739c1b1c5d9a49c970853b7c2b4324c162308ff3
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (237 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 212.664558788134, "std_reward": 86.77174805795032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T03:36:53.442407"}