Create modeling_llamavision.py
Browse files- modeling_llamavision.py +148 -0
modeling_llamavision.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import (
|
| 4 |
+
PreTrainedModel,
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
+
AutoModel,
|
| 7 |
+
SiglipImageProcessor,
|
| 8 |
+
)
|
| 9 |
+
from .configuration_llamavision import LlamavisionConfig
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ProjectionModule(nn.Module):
|
| 13 |
+
def __init__(self, mm_hidden_size=1152, hidden_size=4096):
|
| 14 |
+
super(ProjectionModule, self).__init__()
|
| 15 |
+
|
| 16 |
+
# Directly set up the sequential model
|
| 17 |
+
self.model = nn.Sequential(
|
| 18 |
+
nn.Linear(mm_hidden_size, hidden_size),
|
| 19 |
+
nn.GELU(),
|
| 20 |
+
nn.Linear(hidden_size, hidden_size),
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
return self.model(x)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Llamavision(PreTrainedModel):
|
| 28 |
+
config_class = LlamavisionConfig
|
| 29 |
+
|
| 30 |
+
def __init__(self, config):
|
| 31 |
+
super().__init__(config)
|
| 32 |
+
|
| 33 |
+
self.vision_model = AutoModel.from_config(self.config.vision_config)
|
| 34 |
+
self.text_model = AutoModelForCausalLM.from_config(self.config.text_config)
|
| 35 |
+
self.processor = SiglipImageProcessor()
|
| 36 |
+
self.mm_projector = ProjectionModule(
|
| 37 |
+
mm_hidden_size=config.vision_config.hidden_size,
|
| 38 |
+
hidden_size=config.text_config.hidden_size,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
@property
|
| 42 |
+
def device(self):
|
| 43 |
+
return self.text_model.device
|
| 44 |
+
|
| 45 |
+
def encode_image(self, image):
|
| 46 |
+
image = image.convert("RGB")
|
| 47 |
+
image = self.processor(
|
| 48 |
+
images=image,
|
| 49 |
+
return_tensors="pt",
|
| 50 |
+
do_resize=True,
|
| 51 |
+
size={"height": 378, "width": 378},
|
| 52 |
+
)["pixel_values"].to(
|
| 53 |
+
device=self.vision_model.device, dtype=self.vision_model.dtype
|
| 54 |
+
)
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
return self.vision_model(image, output_hidden_states=True).hidden_states[-2]
|
| 57 |
+
|
| 58 |
+
def input_embeds(self, prompt, image_embeds, tokenizer):
|
| 59 |
+
def _tokenize(txt):
|
| 60 |
+
return tokenizer(
|
| 61 |
+
txt, return_tensors="pt", add_special_tokens=False
|
| 62 |
+
).input_ids.to(self.device)
|
| 63 |
+
|
| 64 |
+
text_emb = self.text_model.get_input_embeddings()
|
| 65 |
+
|
| 66 |
+
embeds = []
|
| 67 |
+
|
| 68 |
+
tokenized_prompt = _tokenize(prompt)
|
| 69 |
+
if (
|
| 70 |
+
tokenizer.bos_token_id is not None
|
| 71 |
+
and tokenized_prompt[0][0] != tokenizer.bos_token_id
|
| 72 |
+
):
|
| 73 |
+
embeds.append(
|
| 74 |
+
text_emb(torch.tensor([[tokenizer.bos_token_id]], device=self.device))
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
projected_image_embeds = self.mm_projector(image_embeds.to(self.device))
|
| 78 |
+
embeds.append(projected_image_embeds)
|
| 79 |
+
|
| 80 |
+
embeds.append(text_emb(tokenized_prompt))
|
| 81 |
+
|
| 82 |
+
return torch.cat(embeds, dim=1)
|
| 83 |
+
|
| 84 |
+
def get_input_embeddings(self):
|
| 85 |
+
return self.text_model.get_input_embeddings()
|
| 86 |
+
|
| 87 |
+
def generate(
|
| 88 |
+
self,
|
| 89 |
+
image_embeds,
|
| 90 |
+
prompt,
|
| 91 |
+
tokenizer,
|
| 92 |
+
max_new_tokens=128,
|
| 93 |
+
**kwargs,
|
| 94 |
+
):
|
| 95 |
+
generate_config = {
|
| 96 |
+
"eos_token_id": [
|
| 97 |
+
tokenizer.eos_token_id,
|
| 98 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
| 99 |
+
],
|
| 100 |
+
"bos_token_id": tokenizer.bos_token_id,
|
| 101 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 102 |
+
"max_new_tokens": max_new_tokens,
|
| 103 |
+
**kwargs,
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
| 108 |
+
|
| 109 |
+
attention_mask = torch.ones(
|
| 110 |
+
inputs_embeds.shape[:2],
|
| 111 |
+
dtype=torch.long,
|
| 112 |
+
device=inputs_embeds.device
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
output_ids = self.text_model.generate(
|
| 116 |
+
inputs_embeds=inputs_embeds,
|
| 117 |
+
attention_mask=attention_mask,
|
| 118 |
+
**generate_config
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 122 |
+
|
| 123 |
+
def answer_question(self, image, question, tokenizer, **kwargs):
|
| 124 |
+
image_embeds = self.encode_image(image)
|
| 125 |
+
|
| 126 |
+
chat = [
|
| 127 |
+
{
|
| 128 |
+
"role": "system",
|
| 129 |
+
"content": "You are a helpful AI assistant that can see images and answer questions about them.",
|
| 130 |
+
},
|
| 131 |
+
{"role": "user", "content": question},
|
| 132 |
+
]
|
| 133 |
+
prompt = tokenizer.apply_chat_template(
|
| 134 |
+
chat, tokenize=False, add_generation_prompt=True
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Generate the answer
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
output = self.generate(
|
| 140 |
+
image_embeds=image_embeds,
|
| 141 |
+
prompt=prompt,
|
| 142 |
+
tokenizer=tokenizer,
|
| 143 |
+
**kwargs,
|
| 144 |
+
)[0]
|
| 145 |
+
|
| 146 |
+
# Clean and return the answer
|
| 147 |
+
cleaned_answer = output.strip()
|
| 148 |
+
return cleaned_answer
|