--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-IEEEAccess-FinalRun-4Datasets results: [] --- # wav2vec2-IEEEAccess-FinalRun-4Datasets This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5364 - Wer: 0.2818 - Cer: 0.0677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 1.0425 | 3.2326 | 1600 | 0.4998 | 0.5122 | 0.1218 | | 0.7519 | 6.4651 | 3200 | 0.4336 | 0.4143 | 0.0987 | | 0.5768 | 9.6977 | 4800 | 0.4309 | 0.3936 | 0.0937 | | 0.46 | 12.9302 | 6400 | 0.3926 | 0.3480 | 0.0832 | | 0.382 | 16.1618 | 8000 | 0.4376 | 0.3645 | 0.0828 | | 0.3188 | 19.3943 | 9600 | 0.4384 | 0.3376 | 0.0798 | | 0.2536 | 22.6269 | 11200 | 0.4611 | 0.3110 | 0.0759 | | 0.2115 | 25.8595 | 12800 | 0.4612 | 0.3048 | 0.0737 | | 0.1882 | 29.0910 | 14400 | 0.5392 | 0.3149 | 0.0758 | | 0.1496 | 32.3236 | 16000 | 0.5056 | 0.2951 | 0.0728 | | 0.1252 | 35.5561 | 17600 | 0.5093 | 0.2924 | 0.0712 | | 0.1075 | 38.7887 | 19200 | 0.5203 | 0.2866 | 0.0691 | | 0.083 | 42.0202 | 20800 | 0.5364 | 0.2818 | 0.0677 | ### Framework versions - Transformers 4.52.0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1