File size: 2,565 Bytes
a1e1617
 
d1c103c
 
 
 
 
 
 
 
 
a1e1617
 
d1c103c
 
a1e1617
d1c103c
a1e1617
d1c103c
 
 
 
 
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
a1e1617
d1c103c
 
 
 
 
 
 
 
 
 
 
 
a1e1617
d1c103c
a1e1617
d1c103c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e1617
 
d1c103c
a1e1617
d1c103c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-IEEEAccess-FinalRun-4Datasets
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-IEEEAccess-FinalRun-4Datasets

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5364
- Wer: 0.2818
- Cer: 0.0677

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 1.0425        | 3.2326  | 1600  | 0.4998          | 0.5122 | 0.1218 |
| 0.7519        | 6.4651  | 3200  | 0.4336          | 0.4143 | 0.0987 |
| 0.5768        | 9.6977  | 4800  | 0.4309          | 0.3936 | 0.0937 |
| 0.46          | 12.9302 | 6400  | 0.3926          | 0.3480 | 0.0832 |
| 0.382         | 16.1618 | 8000  | 0.4376          | 0.3645 | 0.0828 |
| 0.3188        | 19.3943 | 9600  | 0.4384          | 0.3376 | 0.0798 |
| 0.2536        | 22.6269 | 11200 | 0.4611          | 0.3110 | 0.0759 |
| 0.2115        | 25.8595 | 12800 | 0.4612          | 0.3048 | 0.0737 |
| 0.1882        | 29.0910 | 14400 | 0.5392          | 0.3149 | 0.0758 |
| 0.1496        | 32.3236 | 16000 | 0.5056          | 0.2951 | 0.0728 |
| 0.1252        | 35.5561 | 17600 | 0.5093          | 0.2924 | 0.0712 |
| 0.1075        | 38.7887 | 19200 | 0.5203          | 0.2866 | 0.0691 |
| 0.083         | 42.0202 | 20800 | 0.5364          | 0.2818 | 0.0677 |


### Framework versions

- Transformers 4.52.0
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1