--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_kaab_tts_ur_5000 results: [] --- # speecht5_finetuned_kaab_tts_ur_5000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.6313 | 0.3772 | 100 | 0.5546 | | 0.5936 | 0.7544 | 200 | 0.5346 | | 0.5665 | 1.1282 | 300 | 0.5138 | | 0.5564 | 1.5054 | 400 | 0.5165 | | 0.5446 | 1.8826 | 500 | 0.5033 | | 0.5416 | 2.2565 | 600 | 0.4978 | | 0.5365 | 2.6337 | 700 | 0.4919 | | 0.5023 | 3.0075 | 800 | 0.4927 | | 0.5223 | 3.3847 | 900 | 0.4952 | | 0.5238 | 3.7619 | 1000 | 0.4921 | | 0.5217 | 4.1358 | 1100 | 0.4857 | | 0.5052 | 4.5130 | 1200 | 0.4969 | | 0.5107 | 4.8901 | 1300 | 0.4815 | | 0.5057 | 5.2640 | 1400 | 0.4825 | | 0.5018 | 5.6412 | 1500 | 0.4766 | | 0.4912 | 6.0151 | 1600 | 0.4766 | | 0.5018 | 6.3923 | 1700 | 0.4800 | | 0.4987 | 6.7694 | 1800 | 0.4771 | | 0.4954 | 7.1433 | 1900 | 0.4739 | | 0.4926 | 7.5205 | 2000 | 0.4789 | | 0.4913 | 7.8977 | 2100 | 0.4729 | | 0.491 | 8.2716 | 2200 | 0.4724 | | 0.4879 | 8.6488 | 2300 | 0.4704 | | 0.4688 | 9.0226 | 2400 | 0.4755 | | 0.4817 | 9.3998 | 2500 | 0.4689 | | 0.4824 | 9.7770 | 2600 | 0.4739 | | 0.4805 | 10.1509 | 2700 | 0.4735 | | 0.4782 | 10.5281 | 2800 | 0.4724 | | 0.4797 | 10.9052 | 2900 | 0.4728 | | 0.4704 | 11.2791 | 3000 | 0.4721 | | 0.4802 | 11.6563 | 3100 | 0.4685 | | 0.4539 | 12.0302 | 3200 | 0.4687 | | 0.4696 | 12.4074 | 3300 | 0.4713 | | 0.4656 | 12.7845 | 3400 | 0.4705 | | 0.4672 | 13.1584 | 3500 | 0.4677 | | 0.4643 | 13.5356 | 3600 | 0.4722 | | 0.4659 | 13.9128 | 3700 | 0.4654 | | 0.4694 | 14.2867 | 3800 | 0.4681 | | 0.4638 | 14.6638 | 3900 | 0.4702 | | 0.4447 | 15.0377 | 4000 | 0.4675 | | 0.4628 | 15.4149 | 4100 | 0.4696 | | 0.46 | 15.7921 | 4200 | 0.4678 | | 0.4592 | 16.1660 | 4300 | 0.4705 | | 0.4616 | 16.5431 | 4400 | 0.4680 | | 0.4578 | 16.9203 | 4500 | 0.4696 | | 0.4576 | 17.2942 | 4600 | 0.4678 | | 0.4555 | 17.6714 | 4700 | 0.4706 | | 0.4394 | 18.0453 | 4800 | 0.4710 | | 0.4485 | 18.4224 | 4900 | 0.4702 | | 0.4563 | 18.7996 | 5000 | 0.4719 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0