k1h0 commited on
Commit
f72e39a
·
verified ·
1 Parent(s): 20612ae

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_under8_nlx
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_under8_nlx
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the codes_nlx_under8 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 3
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 384
46
+ - total_eval_batch_size: 24
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.991869918699187,
3
+ "num_input_tokens_seen": 95944704,
4
+ "total_flos": 4.0703306623541576e+18,
5
+ "train_loss": 0.5785222493234228,
6
+ "train_runtime": 9437.3939,
7
+ "train_samples_per_second": 2.499,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 1.0,
22
+ "high_freq_factor": 4.0,
23
+ "low_freq_factor": 1.0,
24
+ "original_max_position_embeddings": 32768,
25
+ "rope_type": "llama3"
26
+ },
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.48.2",
32
+ "use_cache": false,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 152064
35
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.2"
14
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: Qwen2.5-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: qwen
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_nlx_under8
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 1000
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6f069918b07c064cbba8ae4f00f529aa9bbf84b7cdfcb7fc2694a40f6aa8ef
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bd2dfc1a309d8e54f229c8e53e7ad3716292c710b40069f5ecab0c556d03599
3
+ size 4932749648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bc1b28714c15822444b8ecbfe3b28bf9e1da312eb4ab48a500c555fbea0f502
3
+ size 4991480296
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e979e0d662c63653908e40664174cb6c89be0ee91500ef3887f1a7cec1b7fcc
3
+ size 1361612328
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16163464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors"
345
+ }
346
+ }
running_log.txt ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-07-07 19:00:02] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
2
+
3
+ [INFO|2025-07-07 19:00:02] configuration_utils.py:768 >> Model config Qwen2Config {
4
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
5
+ "architectures": [
6
+ "Qwen2ForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 151643,
10
+ "eos_token_id": 151645,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3584,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 18944,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 28,
17
+ "model_type": "qwen2",
18
+ "num_attention_heads": 28,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 4,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000.0,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.48.2",
28
+ "use_cache": true,
29
+ "use_sliding_window": false,
30
+ "vocab_size": 152064
31
+ }
32
+
33
+
34
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/vocab.json
35
+
36
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/merges.txt
37
+
38
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer.json
39
+
40
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
41
+
42
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
43
+
44
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer_config.json
45
+
46
+ [INFO|2025-07-07 19:00:02] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
47
+
48
+ [INFO|2025-07-07 19:00:03] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
49
+
50
+ [INFO|2025-07-07 19:00:03] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
51
+
52
+ [INFO|2025-07-07 19:00:03] configuration_utils.py:768 >> Model config Qwen2Config {
53
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
54
+ "architectures": [
55
+ "Qwen2ForCausalLM"
56
+ ],
57
+ "attention_dropout": 0.0,
58
+ "bos_token_id": 151643,
59
+ "eos_token_id": 151645,
60
+ "hidden_act": "silu",
61
+ "hidden_size": 3584,
62
+ "initializer_range": 0.02,
63
+ "intermediate_size": 18944,
64
+ "max_position_embeddings": 32768,
65
+ "max_window_layers": 28,
66
+ "model_type": "qwen2",
67
+ "num_attention_heads": 28,
68
+ "num_hidden_layers": 28,
69
+ "num_key_value_heads": 4,
70
+ "rms_norm_eps": 1e-06,
71
+ "rope_scaling": null,
72
+ "rope_theta": 1000000.0,
73
+ "sliding_window": null,
74
+ "tie_word_embeddings": false,
75
+ "torch_dtype": "bfloat16",
76
+ "transformers_version": "4.48.2",
77
+ "use_cache": true,
78
+ "use_sliding_window": false,
79
+ "vocab_size": 152064
80
+ }
81
+
82
+
83
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/vocab.json
84
+
85
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/merges.txt
86
+
87
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer.json
88
+
89
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
90
+
91
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
92
+
93
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer_config.json
94
+
95
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
96
+
97
+ [INFO|2025-07-07 19:00:04] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
98
+
99
+ [INFO|2025-07-07 19:00:04] logging.py:157 >> Add <|im_end|> to stop words.
100
+
101
+ [INFO|2025-07-07 19:00:04] logging.py:157 >> Loading dataset Codes3_query_filtered_553474_mark_less_than_8.0.json...
102
+
103
+ [INFO|2025-07-07 19:00:43] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
104
+
105
+ [INFO|2025-07-07 19:00:43] configuration_utils.py:768 >> Model config Qwen2Config {
106
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
107
+ "architectures": [
108
+ "Qwen2ForCausalLM"
109
+ ],
110
+ "attention_dropout": 0.0,
111
+ "bos_token_id": 151643,
112
+ "eos_token_id": 151645,
113
+ "hidden_act": "silu",
114
+ "hidden_size": 3584,
115
+ "initializer_range": 0.02,
116
+ "intermediate_size": 18944,
117
+ "max_position_embeddings": 32768,
118
+ "max_window_layers": 28,
119
+ "model_type": "qwen2",
120
+ "num_attention_heads": 28,
121
+ "num_hidden_layers": 28,
122
+ "num_key_value_heads": 4,
123
+ "rms_norm_eps": 1e-06,
124
+ "rope_scaling": null,
125
+ "rope_theta": 1000000.0,
126
+ "sliding_window": null,
127
+ "tie_word_embeddings": false,
128
+ "torch_dtype": "bfloat16",
129
+ "transformers_version": "4.48.2",
130
+ "use_cache": true,
131
+ "use_sliding_window": false,
132
+ "vocab_size": 152064
133
+ }
134
+
135
+
136
+ [WARNING|2025-07-07 19:00:43] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
137
+
138
+ [INFO|2025-07-07 19:00:43] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
139
+
140
+ [INFO|2025-07-07 19:00:43] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
141
+
142
+ [INFO|2025-07-07 19:00:44] logging.py:157 >> Liger kernel has been applied to the model.
143
+
144
+ [INFO|2025-07-07 19:00:44] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/model.safetensors.index.json
145
+
146
+ [INFO|2025-07-07 19:00:44] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
147
+
148
+ [INFO|2025-07-07 19:00:44] configuration_utils.py:1140 >> Generate config GenerationConfig {
149
+ "bos_token_id": 151643,
150
+ "eos_token_id": 151645
151
+ }
152
+
153
+
154
+ [INFO|2025-07-07 19:00:52] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
155
+
156
+
157
+ [INFO|2025-07-07 19:00:52] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-Coder-7B-Instruct.
158
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
159
+
160
+ [INFO|2025-07-07 19:00:52] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/generation_config.json
161
+
162
+ [INFO|2025-07-07 19:00:52] configuration_utils.py:1140 >> Generate config GenerationConfig {
163
+ "bos_token_id": 151643,
164
+ "do_sample": true,
165
+ "eos_token_id": [
166
+ 151645,
167
+ 151643
168
+ ],
169
+ "pad_token_id": 151643,
170
+ "repetition_penalty": 1.1,
171
+ "temperature": 0.7,
172
+ "top_k": 20,
173
+ "top_p": 0.8
174
+ }
175
+
176
+
177
+ [INFO|2025-07-07 19:00:52] logging.py:157 >> Gradient checkpointing enabled.
178
+
179
+ [INFO|2025-07-07 19:00:52] logging.py:157 >> Using torch SDPA for faster training and inference.
180
+
181
+ [INFO|2025-07-07 19:00:52] logging.py:157 >> Upcasting trainable params to float32.
182
+
183
+ [INFO|2025-07-07 19:00:52] logging.py:157 >> Fine-tuning method: Freeze
184
+
185
+ [INFO|2025-07-07 19:00:52] logging.py:157 >> Set trainable layers: .13.,.27.
186
+
187
+ [INFO|2025-07-07 19:00:52] logging.py:157 >> trainable params: 466,115,584 || all params: 7,615,616,512 || trainable%: 6.1205
188
+
189
+ [INFO|2025-07-07 19:00:52] trainer.py:741 >> Using auto half precision backend
190
+
191
+ [INFO|2025-07-07 19:00:53] logging.py:157 >> Found linear modules: q_proj,gate_proj,k_proj,down_proj,v_proj,o_proj,up_proj
192
+
193
+ [INFO|2025-07-07 19:00:53] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
194
+
195
+ [INFO|2025-07-07 19:00:53] trainer.py:2369 >> ***** Running training *****
196
+
197
+ [INFO|2025-07-07 19:00:53] trainer.py:2370 >> Num examples = 23,588
198
+
199
+ [INFO|2025-07-07 19:00:53] trainer.py:2371 >> Num Epochs = 1
200
+
201
+ [INFO|2025-07-07 19:00:53] trainer.py:2372 >> Instantaneous batch size per device = 16
202
+
203
+ [INFO|2025-07-07 19:00:53] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 384
204
+
205
+ [INFO|2025-07-07 19:00:53] trainer.py:2376 >> Gradient Accumulation steps = 8
206
+
207
+ [INFO|2025-07-07 19:00:53] trainer.py:2377 >> Total optimization steps = 61
208
+
209
+ [INFO|2025-07-07 19:00:53] trainer.py:2378 >> Number of trainable parameters = 466,115,584
210
+
211
+ [INFO|2025-07-07 19:03:35] logging.py:157 >> {'loss': 0.8835, 'learning_rate': 4.9967e-05, 'epoch': 0.02, 'throughput': 9741.84}
212
+
213
+ [INFO|2025-07-07 19:06:09] logging.py:157 >> {'loss': 0.8172, 'learning_rate': 4.9867e-05, 'epoch': 0.03, 'throughput': 9978.43}
214
+
215
+ [INFO|2025-07-07 19:08:43] logging.py:157 >> {'loss': 0.7415, 'learning_rate': 4.9702e-05, 'epoch': 0.05, 'throughput': 10069.50}
216
+
217
+ [INFO|2025-07-07 19:11:16] logging.py:157 >> {'loss': 0.7198, 'learning_rate': 4.9471e-05, 'epoch': 0.07, 'throughput': 10117.11}
218
+
219
+ [INFO|2025-07-07 19:13:50] logging.py:157 >> {'loss': 0.6985, 'learning_rate': 4.9176e-05, 'epoch': 0.08, 'throughput': 10129.94}
220
+
221
+ [INFO|2025-07-07 19:16:24] logging.py:157 >> {'loss': 0.6642, 'learning_rate': 4.8816e-05, 'epoch': 0.10, 'throughput': 10146.98}
222
+
223
+ [INFO|2025-07-07 19:18:58] logging.py:157 >> {'loss': 0.6677, 'learning_rate': 4.8393e-05, 'epoch': 0.11, 'throughput': 10159.48}
224
+
225
+ [INFO|2025-07-07 19:21:32] logging.py:157 >> {'loss': 0.6451, 'learning_rate': 4.7908e-05, 'epoch': 0.13, 'throughput': 10164.48}
226
+
227
+ [INFO|2025-07-07 19:24:06] logging.py:157 >> {'loss': 0.6327, 'learning_rate': 4.7362e-05, 'epoch': 0.15, 'throughput': 10172.04}
228
+
229
+ [INFO|2025-07-07 19:26:41] logging.py:157 >> {'loss': 0.6331, 'learning_rate': 4.6757e-05, 'epoch': 0.16, 'throughput': 10169.75}
230
+
231
+ [INFO|2025-07-07 19:29:17] logging.py:157 >> {'loss': 0.6219, 'learning_rate': 4.6094e-05, 'epoch': 0.18, 'throughput': 10161.43}
232
+
233
+ [INFO|2025-07-07 19:31:50] logging.py:157 >> {'loss': 0.6205, 'learning_rate': 4.5376e-05, 'epoch': 0.20, 'throughput': 10168.14}
234
+
235
+ [INFO|2025-07-07 19:34:24] logging.py:157 >> {'loss': 0.6010, 'learning_rate': 4.4603e-05, 'epoch': 0.21, 'throughput': 10172.37}
236
+
237
+ [INFO|2025-07-07 19:36:58] logging.py:157 >> {'loss': 0.6077, 'learning_rate': 4.3778e-05, 'epoch': 0.23, 'throughput': 10175.33}
238
+
239
+ [INFO|2025-07-07 19:39:32] logging.py:157 >> {'loss': 0.5958, 'learning_rate': 4.2904e-05, 'epoch': 0.24, 'throughput': 10179.71}
240
+
241
+ [INFO|2025-07-07 19:42:05] logging.py:157 >> {'loss': 0.5838, 'learning_rate': 4.1982e-05, 'epoch': 0.26, 'throughput': 10183.00}
242
+
243
+ [INFO|2025-07-07 19:44:39] logging.py:157 >> {'loss': 0.5629, 'learning_rate': 4.1015e-05, 'epoch': 0.28, 'throughput': 10185.76}
244
+
245
+ [INFO|2025-07-07 19:47:13] logging.py:157 >> {'loss': 0.5848, 'learning_rate': 4.0005e-05, 'epoch': 0.29, 'throughput': 10188.71}
246
+
247
+ [INFO|2025-07-07 19:49:47] logging.py:157 >> {'loss': 0.5772, 'learning_rate': 3.8956e-05, 'epoch': 0.31, 'throughput': 10190.23}
248
+
249
+ [INFO|2025-07-07 19:52:20] logging.py:157 >> {'loss': 0.5719, 'learning_rate': 3.7870e-05, 'epoch': 0.33, 'throughput': 10192.39}
250
+
251
+ [INFO|2025-07-07 19:54:54] logging.py:157 >> {'loss': 0.5445, 'learning_rate': 3.6749e-05, 'epoch': 0.34, 'throughput': 10195.72}
252
+
253
+ [INFO|2025-07-07 19:57:27] logging.py:157 >> {'loss': 0.5560, 'learning_rate': 3.5598e-05, 'epoch': 0.36, 'throughput': 10198.63}
254
+
255
+ [INFO|2025-07-07 20:00:01] logging.py:157 >> {'loss': 0.5736, 'learning_rate': 3.4418e-05, 'epoch': 0.37, 'throughput': 10199.96}
256
+
257
+ [INFO|2025-07-07 20:02:34] logging.py:157 >> {'loss': 0.5350, 'learning_rate': 3.3214e-05, 'epoch': 0.39, 'throughput': 10203.32}
258
+
259
+ [INFO|2025-07-07 20:05:07] logging.py:157 >> {'loss': 0.5634, 'learning_rate': 3.1987e-05, 'epoch': 0.41, 'throughput': 10205.81}
260
+
261
+ [INFO|2025-07-07 20:07:42] logging.py:157 >> {'loss': 0.5648, 'learning_rate': 3.0742e-05, 'epoch': 0.42, 'throughput': 10203.48}
262
+
263
+ [INFO|2025-07-07 20:10:16] logging.py:157 >> {'loss': 0.5467, 'learning_rate': 2.9482e-05, 'epoch': 0.44, 'throughput': 10202.72}
264
+
265
+ [INFO|2025-07-07 20:12:50] logging.py:157 >> {'loss': 0.5567, 'learning_rate': 2.8210e-05, 'epoch': 0.46, 'throughput': 10203.80}
266
+
267
+ [INFO|2025-07-07 20:15:24] logging.py:157 >> {'loss': 0.5847, 'learning_rate': 2.6929e-05, 'epoch': 0.47, 'throughput': 10203.36}
268
+
269
+ [INFO|2025-07-07 20:17:58] logging.py:157 >> {'loss': 0.5429, 'learning_rate': 2.5644e-05, 'epoch': 0.49, 'throughput': 10204.19}
270
+
271
+ [INFO|2025-07-07 20:20:32] logging.py:157 >> {'loss': 0.5435, 'learning_rate': 2.4356e-05, 'epoch': 0.50, 'throughput': 10204.68}
272
+
273
+ [INFO|2025-07-07 20:23:06] logging.py:157 >> {'loss': 0.5482, 'learning_rate': 2.3071e-05, 'epoch': 0.52, 'throughput': 10205.83}
274
+
275
+ [INFO|2025-07-07 20:25:40] logging.py:157 >> {'loss': 0.5418, 'learning_rate': 2.1790e-05, 'epoch': 0.54, 'throughput': 10206.16}
276
+
277
+ [INFO|2025-07-07 20:28:14] logging.py:157 >> {'loss': 0.5320, 'learning_rate': 2.0518e-05, 'epoch': 0.55, 'throughput': 10205.44}
278
+
279
+ [INFO|2025-07-07 20:30:48] logging.py:157 >> {'loss': 0.5360, 'learning_rate': 1.9258e-05, 'epoch': 0.57, 'throughput': 10205.42}
280
+
281
+ [INFO|2025-07-07 20:33:23] logging.py:157 >> {'loss': 0.5314, 'learning_rate': 1.8013e-05, 'epoch': 0.59, 'throughput': 10204.05}
282
+
283
+ [INFO|2025-07-07 20:35:56] logging.py:157 >> {'loss': 0.5595, 'learning_rate': 1.6786e-05, 'epoch': 0.60, 'throughput': 10205.77}
284
+
285
+ [INFO|2025-07-07 20:38:32] logging.py:157 >> {'loss': 0.5418, 'learning_rate': 1.5582e-05, 'epoch': 0.62, 'throughput': 10203.12}
286
+
287
+ [INFO|2025-07-07 20:41:06] logging.py:157 >> {'loss': 0.5438, 'learning_rate': 1.4402e-05, 'epoch': 0.63, 'throughput': 10203.74}
288
+
289
+ [INFO|2025-07-07 20:43:39] logging.py:157 >> {'loss': 0.5239, 'learning_rate': 1.3251e-05, 'epoch': 0.65, 'throughput': 10204.70}
290
+
291
+ [INFO|2025-07-07 20:46:13] logging.py:157 >> {'loss': 0.5459, 'learning_rate': 1.2130e-05, 'epoch': 0.67, 'throughput': 10204.78}
292
+
293
+ [INFO|2025-07-07 20:48:47] logging.py:157 >> {'loss': 0.5373, 'learning_rate': 1.1044e-05, 'epoch': 0.68, 'throughput': 10204.67}
294
+
295
+ [INFO|2025-07-07 20:51:22] logging.py:157 >> {'loss': 0.5474, 'learning_rate': 9.9946e-06, 'epoch': 0.70, 'throughput': 10203.24}
296
+
297
+ [INFO|2025-07-07 20:53:56] logging.py:157 >> {'loss': 0.5236, 'learning_rate': 8.9852e-06, 'epoch': 0.72, 'throughput': 10203.82}
298
+
299
+ [INFO|2025-07-07 20:56:29] logging.py:157 >> {'loss': 0.5336, 'learning_rate': 8.0182e-06, 'epoch': 0.73, 'throughput': 10205.18}
300
+
301
+ [INFO|2025-07-07 20:59:05] logging.py:157 >> {'loss': 0.5198, 'learning_rate': 7.0962e-06, 'epoch': 0.75, 'throughput': 10203.27}
302
+
303
+ [INFO|2025-07-07 21:01:40] logging.py:157 >> {'loss': 0.5419, 'learning_rate': 6.2217e-06, 'epoch': 0.76, 'throughput': 10202.64}
304
+
305
+ [INFO|2025-07-07 21:04:17] logging.py:157 >> {'loss': 0.5544, 'learning_rate': 5.3970e-06, 'epoch': 0.78, 'throughput': 10198.78}
306
+
307
+ [INFO|2025-07-07 21:06:50] logging.py:157 >> {'loss': 0.5689, 'learning_rate': 4.6243e-06, 'epoch': 0.80, 'throughput': 10200.12}
308
+
309
+ [INFO|2025-07-07 21:09:24] logging.py:157 >> {'loss': 0.5170, 'learning_rate': 3.9056e-06, 'epoch': 0.81, 'throughput': 10200.21}
310
+
311
+ [INFO|2025-07-07 21:11:58] logging.py:157 >> {'loss': 0.5440, 'learning_rate': 3.2429e-06, 'epoch': 0.83, 'throughput': 10200.78}
312
+
313
+ [INFO|2025-07-07 21:14:34] logging.py:157 >> {'loss': 0.5265, 'learning_rate': 2.6378e-06, 'epoch': 0.85, 'throughput': 10198.05}
314
+
315
+ [INFO|2025-07-07 21:17:09] logging.py:157 >> {'loss': 0.5301, 'learning_rate': 2.0921e-06, 'epoch': 0.86, 'throughput': 10197.60}
316
+
317
+ [INFO|2025-07-07 21:19:44] logging.py:157 >> {'loss': 0.5357, 'learning_rate': 1.6071e-06, 'epoch': 0.88, 'throughput': 10196.24}
318
+
319
+ [INFO|2025-07-07 21:22:18] logging.py:157 >> {'loss': 0.5220, 'learning_rate': 1.1841e-06, 'epoch': 0.89, 'throughput': 10196.15}
320
+
321
+ [INFO|2025-07-07 21:24:54] logging.py:157 >> {'loss': 0.5282, 'learning_rate': 8.2431e-07, 'epoch': 0.91, 'throughput': 10194.76}
322
+
323
+ [INFO|2025-07-07 21:27:28] logging.py:157 >> {'loss': 0.5327, 'learning_rate': 5.2861e-07, 'epoch': 0.93, 'throughput': 10195.16}
324
+
325
+ [INFO|2025-07-07 21:30:02] logging.py:157 >> {'loss': 0.5237, 'learning_rate': 2.9780e-07, 'epoch': 0.94, 'throughput': 10195.52}
326
+
327
+ [INFO|2025-07-07 21:32:36] logging.py:157 >> {'loss': 0.5499, 'learning_rate': 1.3250e-07, 'epoch': 0.96, 'throughput': 10195.79}
328
+
329
+ [INFO|2025-07-07 21:35:10] logging.py:157 >> {'loss': 0.5576, 'learning_rate': 3.3148e-08, 'epoch': 0.98, 'throughput': 10195.29}
330
+
331
+ [INFO|2025-07-07 21:37:45] logging.py:157 >> {'loss': 0.5487, 'learning_rate': 0.0000e+00, 'epoch': 0.99, 'throughput': 10195.34}
332
+
333
+ [INFO|2025-07-07 21:37:45] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/checkpoint-61
334
+
335
+ [INFO|2025-07-07 21:37:45] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/checkpoint-61/config.json
336
+
337
+ [INFO|2025-07-07 21:37:45] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/checkpoint-61/generation_config.json
338
+
339
+ [INFO|2025-07-07 21:38:10] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/checkpoint-61/model.safetensors.index.json.
340
+
341
+ [INFO|2025-07-07 21:38:10] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/checkpoint-61/tokenizer_config.json
342
+
343
+ [INFO|2025-07-07 21:38:10] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/checkpoint-61/special_tokens_map.json
344
+
345
+ [INFO|2025-07-07 21:38:10] trainer.py:2643 >>
346
+
347
+ Training completed. Do not forget to share your model on huggingface.co/models =)
348
+
349
+
350
+
351
+ [INFO|2025-07-07 21:38:10] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx
352
+
353
+ [INFO|2025-07-07 21:38:10] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/config.json
354
+
355
+ [INFO|2025-07-07 21:38:10] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/generation_config.json
356
+
357
+ [INFO|2025-07-07 21:38:35] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/model.safetensors.index.json.
358
+
359
+ [INFO|2025-07-07 21:38:35] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/tokenizer_config.json
360
+
361
+ [INFO|2025-07-07 21:38:35] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx/special_tokens_map.json
362
+
363
+ [WARNING|2025-07-07 21:38:35] logging.py:162 >> No metric eval_loss to plot.
364
+
365
+ [WARNING|2025-07-07 21:38:35] logging.py:162 >> No metric eval_accuracy to plot.
366
+
367
+ [INFO|2025-07-07 21:38:35] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
368
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
369
+
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 4096,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.991869918699187,
3
+ "num_input_tokens_seen": 95944704,
4
+ "total_flos": 4.0703306623541576e+18,
5
+ "train_loss": 0.5785222493234228,
6
+ "train_runtime": 9437.3939,
7
+ "train_samples_per_second": 2.499,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 61, "loss": 0.8835, "lr": 4.9966852247120764e-05, "epoch": 0.016260162601626018, "percentage": 1.64, "elapsed_time": "0:02:41", "remaining_time": "2:41:27", "throughput": 9741.84, "total_tokens": 1572864}
2
+ {"current_steps": 2, "total_steps": 61, "loss": 0.8172, "lr": 4.9867496890364726e-05, "epoch": 0.032520325203252036, "percentage": 3.28, "elapsed_time": "0:05:15", "remaining_time": "2:34:59", "throughput": 9978.43, "total_tokens": 3145728}
3
+ {"current_steps": 3, "total_steps": 61, "loss": 0.7415, "lr": 4.970219740227693e-05, "epoch": 0.04878048780487805, "percentage": 4.92, "elapsed_time": "0:07:48", "remaining_time": "2:30:59", "throughput": 10069.5, "total_tokens": 4718592}
4
+ {"current_steps": 4, "total_steps": 61, "loss": 0.7198, "lr": 4.947139212738395e-05, "epoch": 0.06504065040650407, "percentage": 6.56, "elapsed_time": "0:10:21", "remaining_time": "2:27:41", "throughput": 10117.11, "total_tokens": 6291456}
5
+ {"current_steps": 5, "total_steps": 61, "loss": 0.6985, "lr": 4.9175693119783013e-05, "epoch": 0.08130081300813008, "percentage": 8.2, "elapsed_time": "0:12:56", "remaining_time": "2:24:55", "throughput": 10129.94, "total_tokens": 7864320}
6
+ {"current_steps": 6, "total_steps": 61, "loss": 0.6642, "lr": 4.881588452008456e-05, "epoch": 0.0975609756097561, "percentage": 9.84, "elapsed_time": "0:15:30", "remaining_time": "2:22:05", "throughput": 10146.98, "total_tokens": 9437184}
7
+ {"current_steps": 7, "total_steps": 61, "loss": 0.6677, "lr": 4.839292047601234e-05, "epoch": 0.11382113821138211, "percentage": 11.48, "elapsed_time": "0:18:03", "remaining_time": "2:19:20", "throughput": 10159.48, "total_tokens": 11010048}
8
+ {"current_steps": 8, "total_steps": 61, "loss": 0.6451, "lr": 4.790792261217512e-05, "epoch": 0.13008130081300814, "percentage": 13.11, "elapsed_time": "0:20:37", "remaining_time": "2:16:41", "throughput": 10164.48, "total_tokens": 12582912}
9
+ {"current_steps": 9, "total_steps": 61, "loss": 0.6327, "lr": 4.736217705571989e-05, "epoch": 0.14634146341463414, "percentage": 14.75, "elapsed_time": "0:23:11", "remaining_time": "2:14:00", "throughput": 10172.04, "total_tokens": 14155776}
10
+ {"current_steps": 10, "total_steps": 61, "loss": 0.6331, "lr": 4.6757131025753886e-05, "epoch": 0.16260162601626016, "percentage": 16.39, "elapsed_time": "0:25:46", "remaining_time": "2:11:27", "throughput": 10169.75, "total_tokens": 15728640}
11
+ {"current_steps": 11, "total_steps": 61, "loss": 0.6219, "lr": 4.609438899557964e-05, "epoch": 0.17886178861788618, "percentage": 18.03, "elapsed_time": "0:28:22", "remaining_time": "2:08:59", "throughput": 10161.43, "total_tokens": 17301504}
12
+ {"current_steps": 12, "total_steps": 61, "loss": 0.6205, "lr": 4.5375708437920284e-05, "epoch": 0.1951219512195122, "percentage": 19.67, "elapsed_time": "0:30:56", "remaining_time": "2:06:19", "throughput": 10168.14, "total_tokens": 18874368}
13
+ {"current_steps": 13, "total_steps": 61, "loss": 0.601, "lr": 4.460299516441777e-05, "epoch": 0.21138211382113822, "percentage": 21.31, "elapsed_time": "0:33:30", "remaining_time": "2:03:41", "throughput": 10172.37, "total_tokens": 20447232}
14
+ {"current_steps": 14, "total_steps": 61, "loss": 0.6077, "lr": 4.3778298271762995e-05, "epoch": 0.22764227642276422, "percentage": 22.95, "elapsed_time": "0:36:04", "remaining_time": "2:01:05", "throughput": 10175.33, "total_tokens": 22020096}
15
+ {"current_steps": 15, "total_steps": 61, "loss": 0.5958, "lr": 4.2903804707859835e-05, "epoch": 0.24390243902439024, "percentage": 24.59, "elapsed_time": "0:38:37", "remaining_time": "1:58:27", "throughput": 10179.71, "total_tokens": 23592960}
16
+ {"current_steps": 16, "total_steps": 61, "loss": 0.5838, "lr": 4.198183347243233e-05, "epoch": 0.2601626016260163, "percentage": 26.23, "elapsed_time": "0:41:11", "remaining_time": "1:55:50", "throughput": 10183.0, "total_tokens": 25165824}
17
+ {"current_steps": 17, "total_steps": 61, "loss": 0.5629, "lr": 4.101482946745439e-05, "epoch": 0.2764227642276423, "percentage": 27.87, "elapsed_time": "0:43:45", "remaining_time": "1:53:14", "throughput": 10185.76, "total_tokens": 26738688}
18
+ {"current_steps": 18, "total_steps": 61, "loss": 0.5848, "lr": 4.000535701370921e-05, "epoch": 0.2926829268292683, "percentage": 29.51, "elapsed_time": "0:46:18", "remaining_time": "1:50:38", "throughput": 10188.71, "total_tokens": 28311552}
19
+ {"current_steps": 19, "total_steps": 61, "loss": 0.5772, "lr": 3.895609305067162e-05, "epoch": 0.3089430894308943, "percentage": 31.15, "elapsed_time": "0:48:52", "remaining_time": "1:48:02", "throughput": 10190.23, "total_tokens": 29884416}
20
+ {"current_steps": 20, "total_steps": 61, "loss": 0.5719, "lr": 3.7869820037745776e-05, "epoch": 0.3252032520325203, "percentage": 32.79, "elapsed_time": "0:51:26", "remaining_time": "1:45:27", "throughput": 10192.39, "total_tokens": 31457280}
21
+ {"current_steps": 21, "total_steps": 61, "loss": 0.5445, "lr": 3.6749418575683e-05, "epoch": 0.34146341463414637, "percentage": 34.43, "elapsed_time": "0:53:59", "remaining_time": "1:42:50", "throughput": 10195.72, "total_tokens": 33030144}
22
+ {"current_steps": 22, "total_steps": 61, "loss": 0.556, "lr": 3.5597859767746524e-05, "epoch": 0.35772357723577236, "percentage": 36.07, "elapsed_time": "0:56:32", "remaining_time": "1:40:14", "throughput": 10198.63, "total_tokens": 34603008}
23
+ {"current_steps": 23, "total_steps": 61, "loss": 0.5736, "lr": 3.4418197340879635e-05, "epoch": 0.37398373983739835, "percentage": 37.7, "elapsed_time": "0:59:06", "remaining_time": "1:37:39", "throughput": 10199.96, "total_tokens": 36175872}
24
+ {"current_steps": 24, "total_steps": 61, "loss": 0.535, "lr": 3.321355954777087e-05, "epoch": 0.3902439024390244, "percentage": 39.34, "elapsed_time": "1:01:39", "remaining_time": "1:35:03", "throughput": 10203.32, "total_tokens": 37748736}
25
+ {"current_steps": 25, "total_steps": 61, "loss": 0.5634, "lr": 3.1987140871290236e-05, "epoch": 0.4065040650406504, "percentage": 40.98, "elapsed_time": "1:04:12", "remaining_time": "1:32:28", "throughput": 10205.81, "total_tokens": 39321600}
26
+ {"current_steps": 26, "total_steps": 61, "loss": 0.5648, "lr": 3.07421935532949e-05, "epoch": 0.42276422764227645, "percentage": 42.62, "elapsed_time": "1:06:47", "remaining_time": "1:29:55", "throughput": 10203.48, "total_tokens": 40894464}
27
+ {"current_steps": 27, "total_steps": 61, "loss": 0.5467, "lr": 2.9482018970268393e-05, "epoch": 0.43902439024390244, "percentage": 44.26, "elapsed_time": "1:09:22", "remaining_time": "1:27:21", "throughput": 10202.72, "total_tokens": 42467328}
28
+ {"current_steps": 28, "total_steps": 61, "loss": 0.5567, "lr": 2.8209958878663778e-05, "epoch": 0.45528455284552843, "percentage": 45.9, "elapsed_time": "1:11:56", "remaining_time": "1:24:46", "throughput": 10203.8, "total_tokens": 44040192}
29
+ {"current_steps": 29, "total_steps": 61, "loss": 0.5847, "lr": 2.6929386553166164e-05, "epoch": 0.4715447154471545, "percentage": 47.54, "elapsed_time": "1:14:30", "remaining_time": "1:22:12", "throughput": 10203.36, "total_tokens": 45613056}
30
+ {"current_steps": 30, "total_steps": 61, "loss": 0.5429, "lr": 2.564369784137472e-05, "epoch": 0.4878048780487805, "percentage": 49.18, "elapsed_time": "1:17:04", "remaining_time": "1:19:38", "throughput": 10204.19, "total_tokens": 47185920}
31
+ {"current_steps": 31, "total_steps": 61, "loss": 0.5435, "lr": 2.4356302158625288e-05, "epoch": 0.5040650406504065, "percentage": 50.82, "elapsed_time": "1:19:38", "remaining_time": "1:17:03", "throughput": 10204.68, "total_tokens": 48758784}
32
+ {"current_steps": 32, "total_steps": 61, "loss": 0.5482, "lr": 2.3070613446833842e-05, "epoch": 0.5203252032520326, "percentage": 52.46, "elapsed_time": "1:22:11", "remaining_time": "1:14:29", "throughput": 10205.83, "total_tokens": 50331648}
33
+ {"current_steps": 33, "total_steps": 61, "loss": 0.5418, "lr": 2.1790041121336225e-05, "epoch": 0.5365853658536586, "percentage": 54.1, "elapsed_time": "1:24:45", "remaining_time": "1:11:55", "throughput": 10206.16, "total_tokens": 51904512}
34
+ {"current_steps": 34, "total_steps": 61, "loss": 0.532, "lr": 2.0517981029731616e-05, "epoch": 0.5528455284552846, "percentage": 55.74, "elapsed_time": "1:27:20", "remaining_time": "1:09:21", "throughput": 10205.44, "total_tokens": 53477376}
35
+ {"current_steps": 35, "total_steps": 61, "loss": 0.536, "lr": 1.9257806446705116e-05, "epoch": 0.5691056910569106, "percentage": 57.38, "elapsed_time": "1:29:54", "remaining_time": "1:06:47", "throughput": 10205.42, "total_tokens": 55050240}
36
+ {"current_steps": 36, "total_steps": 61, "loss": 0.5314, "lr": 1.8012859128709766e-05, "epoch": 0.5853658536585366, "percentage": 59.02, "elapsed_time": "1:32:29", "remaining_time": "1:04:13", "throughput": 10204.05, "total_tokens": 56623104}
37
+ {"current_steps": 37, "total_steps": 61, "loss": 0.5595, "lr": 1.6786440452229134e-05, "epoch": 0.6016260162601627, "percentage": 60.66, "elapsed_time": "1:35:02", "remaining_time": "1:01:38", "throughput": 10205.77, "total_tokens": 58195968}
38
+ {"current_steps": 38, "total_steps": 61, "loss": 0.5418, "lr": 1.558180265912037e-05, "epoch": 0.6178861788617886, "percentage": 62.3, "elapsed_time": "1:37:37", "remaining_time": "0:59:05", "throughput": 10203.12, "total_tokens": 59768832}
39
+ {"current_steps": 39, "total_steps": 61, "loss": 0.5438, "lr": 1.4402140232253486e-05, "epoch": 0.6341463414634146, "percentage": 63.93, "elapsed_time": "1:40:11", "remaining_time": "0:56:31", "throughput": 10203.74, "total_tokens": 61341696}
40
+ {"current_steps": 40, "total_steps": 61, "loss": 0.5239, "lr": 1.325058142431701e-05, "epoch": 0.6504065040650406, "percentage": 65.57, "elapsed_time": "1:42:45", "remaining_time": "0:53:56", "throughput": 10204.7, "total_tokens": 62914560}
41
+ {"current_steps": 41, "total_steps": 61, "loss": 0.5459, "lr": 1.213017996225424e-05, "epoch": 0.6666666666666666, "percentage": 67.21, "elapsed_time": "1:45:19", "remaining_time": "0:51:22", "throughput": 10204.78, "total_tokens": 64487424}
42
+ {"current_steps": 42, "total_steps": 61, "loss": 0.5373, "lr": 1.1043906949328387e-05, "epoch": 0.6829268292682927, "percentage": 68.85, "elapsed_time": "1:47:53", "remaining_time": "0:48:48", "throughput": 10204.67, "total_tokens": 66060288}
43
+ {"current_steps": 43, "total_steps": 61, "loss": 0.5474, "lr": 9.994642986290797e-06, "epoch": 0.6991869918699187, "percentage": 70.49, "elapsed_time": "1:50:28", "remaining_time": "0:46:14", "throughput": 10203.24, "total_tokens": 67633152}
44
+ {"current_steps": 44, "total_steps": 61, "loss": 0.5236, "lr": 8.985170532545622e-06, "epoch": 0.7154471544715447, "percentage": 72.13, "elapsed_time": "1:53:02", "remaining_time": "0:43:40", "throughput": 10203.82, "total_tokens": 69206016}
45
+ {"current_steps": 45, "total_steps": 61, "loss": 0.5336, "lr": 8.018166527567672e-06, "epoch": 0.7317073170731707, "percentage": 73.77, "elapsed_time": "1:55:35", "remaining_time": "0:41:05", "throughput": 10205.18, "total_tokens": 70778880}
46
+ {"current_steps": 46, "total_steps": 61, "loss": 0.5198, "lr": 7.096195292140173e-06, "epoch": 0.7479674796747967, "percentage": 75.41, "elapsed_time": "1:58:11", "remaining_time": "0:38:32", "throughput": 10203.27, "total_tokens": 72351744}
47
+ {"current_steps": 47, "total_steps": 61, "loss": 0.5419, "lr": 6.221701728237009e-06, "epoch": 0.7642276422764228, "percentage": 77.05, "elapsed_time": "2:00:45", "remaining_time": "0:35:58", "throughput": 10202.64, "total_tokens": 73924608}
48
+ {"current_steps": 48, "total_steps": 61, "loss": 0.5544, "lr": 5.397004835582242e-06, "epoch": 0.7804878048780488, "percentage": 78.69, "elapsed_time": "2:03:22", "remaining_time": "0:33:24", "throughput": 10198.78, "total_tokens": 75497472}
49
+ {"current_steps": 49, "total_steps": 61, "loss": 0.5689, "lr": 4.624291562079719e-06, "epoch": 0.7967479674796748, "percentage": 80.33, "elapsed_time": "2:05:55", "remaining_time": "0:30:50", "throughput": 10200.12, "total_tokens": 77070336}
50
+ {"current_steps": 50, "total_steps": 61, "loss": 0.517, "lr": 3.90561100442036e-06, "epoch": 0.8130081300813008, "percentage": 81.97, "elapsed_time": "2:08:29", "remaining_time": "0:28:16", "throughput": 10200.21, "total_tokens": 78643200}
51
+ {"current_steps": 51, "total_steps": 61, "loss": 0.544, "lr": 3.2428689742461188e-06, "epoch": 0.8292682926829268, "percentage": 83.61, "elapsed_time": "2:11:03", "remaining_time": "0:25:41", "throughput": 10200.78, "total_tokens": 80216064}
52
+ {"current_steps": 52, "total_steps": 61, "loss": 0.5265, "lr": 2.637822944280116e-06, "epoch": 0.8455284552845529, "percentage": 85.25, "elapsed_time": "2:13:40", "remaining_time": "0:23:08", "throughput": 10198.05, "total_tokens": 81788928}
53
+ {"current_steps": 53, "total_steps": 61, "loss": 0.5301, "lr": 2.092077387824884e-06, "epoch": 0.8617886178861789, "percentage": 86.89, "elapsed_time": "2:16:14", "remaining_time": "0:20:33", "throughput": 10197.6, "total_tokens": 83361792}
54
+ {"current_steps": 54, "total_steps": 61, "loss": 0.5357, "lr": 1.6070795239876618e-06, "epoch": 0.8780487804878049, "percentage": 88.52, "elapsed_time": "2:18:49", "remaining_time": "0:17:59", "throughput": 10196.24, "total_tokens": 84934656}
55
+ {"current_steps": 55, "total_steps": 61, "loss": 0.522, "lr": 1.1841154799154374e-06, "epoch": 0.8943089430894309, "percentage": 90.16, "elapsed_time": "2:21:24", "remaining_time": "0:15:25", "throughput": 10196.15, "total_tokens": 86507520}
56
+ {"current_steps": 56, "total_steps": 61, "loss": 0.5282, "lr": 8.243068802169906e-07, "epoch": 0.9105691056910569, "percentage": 91.8, "elapsed_time": "2:23:59", "remaining_time": "0:12:51", "throughput": 10194.76, "total_tokens": 88080384}
57
+ {"current_steps": 57, "total_steps": 61, "loss": 0.5327, "lr": 5.286078726160549e-07, "epoch": 0.926829268292683, "percentage": 93.44, "elapsed_time": "2:26:33", "remaining_time": "0:10:17", "throughput": 10195.16, "total_tokens": 89653248}
58
+ {"current_steps": 58, "total_steps": 61, "loss": 0.5237, "lr": 2.978025977230736e-07, "epoch": 0.943089430894309, "percentage": 95.08, "elapsed_time": "2:29:07", "remaining_time": "0:07:42", "throughput": 10195.52, "total_tokens": 91226112}
59
+ {"current_steps": 59, "total_steps": 61, "loss": 0.5499, "lr": 1.3250310963527358e-07, "epoch": 0.959349593495935, "percentage": 96.72, "elapsed_time": "2:31:41", "remaining_time": "0:05:08", "throughput": 10195.79, "total_tokens": 92798976}
60
+ {"current_steps": 60, "total_steps": 61, "loss": 0.5576, "lr": 3.314775287923677e-08, "epoch": 0.975609756097561, "percentage": 98.36, "elapsed_time": "2:34:16", "remaining_time": "0:02:34", "throughput": 10195.29, "total_tokens": 94371840}
61
+ {"current_steps": 61, "total_steps": 61, "loss": 0.5487, "lr": 0.0, "epoch": 0.991869918699187, "percentage": 100.0, "elapsed_time": "2:36:50", "remaining_time": "0:00:00", "throughput": 10195.34, "total_tokens": 95944704}
62
+ {"current_steps": 61, "total_steps": 61, "epoch": 0.991869918699187, "percentage": 100.0, "elapsed_time": "2:37:16", "remaining_time": "0:00:00", "throughput": 10167.7, "total_tokens": 95944704}
trainer_state.json ADDED
@@ -0,0 +1,531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.991869918699187,
5
+ "eval_steps": 500,
6
+ "global_step": 61,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016260162601626018,
13
+ "grad_norm": 1.3551084995269775,
14
+ "learning_rate": 4.9966852247120764e-05,
15
+ "loss": 0.8835,
16
+ "num_input_tokens_seen": 1572864,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.032520325203252036,
21
+ "grad_norm": 1.0672752857208252,
22
+ "learning_rate": 4.9867496890364726e-05,
23
+ "loss": 0.8172,
24
+ "num_input_tokens_seen": 3145728,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.04878048780487805,
29
+ "grad_norm": 0.6499503254890442,
30
+ "learning_rate": 4.970219740227693e-05,
31
+ "loss": 0.7415,
32
+ "num_input_tokens_seen": 4718592,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.06504065040650407,
37
+ "grad_norm": 0.4817531704902649,
38
+ "learning_rate": 4.947139212738395e-05,
39
+ "loss": 0.7198,
40
+ "num_input_tokens_seen": 6291456,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.08130081300813008,
45
+ "grad_norm": 0.33635902404785156,
46
+ "learning_rate": 4.9175693119783013e-05,
47
+ "loss": 0.6985,
48
+ "num_input_tokens_seen": 7864320,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.0975609756097561,
53
+ "grad_norm": 0.27813318371772766,
54
+ "learning_rate": 4.881588452008456e-05,
55
+ "loss": 0.6642,
56
+ "num_input_tokens_seen": 9437184,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.11382113821138211,
61
+ "grad_norm": 0.25561287999153137,
62
+ "learning_rate": 4.839292047601234e-05,
63
+ "loss": 0.6677,
64
+ "num_input_tokens_seen": 11010048,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.13008130081300814,
69
+ "grad_norm": 0.25520581007003784,
70
+ "learning_rate": 4.790792261217512e-05,
71
+ "loss": 0.6451,
72
+ "num_input_tokens_seen": 12582912,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.14634146341463414,
77
+ "grad_norm": 0.2094946950674057,
78
+ "learning_rate": 4.736217705571989e-05,
79
+ "loss": 0.6327,
80
+ "num_input_tokens_seen": 14155776,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.16260162601626016,
85
+ "grad_norm": 0.21939203143119812,
86
+ "learning_rate": 4.6757131025753886e-05,
87
+ "loss": 0.6331,
88
+ "num_input_tokens_seen": 15728640,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.17886178861788618,
93
+ "grad_norm": 0.20424292981624603,
94
+ "learning_rate": 4.609438899557964e-05,
95
+ "loss": 0.6219,
96
+ "num_input_tokens_seen": 17301504,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.1951219512195122,
101
+ "grad_norm": 0.19756929576396942,
102
+ "learning_rate": 4.5375708437920284e-05,
103
+ "loss": 0.6205,
104
+ "num_input_tokens_seen": 18874368,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.21138211382113822,
109
+ "grad_norm": 0.18154746294021606,
110
+ "learning_rate": 4.460299516441777e-05,
111
+ "loss": 0.601,
112
+ "num_input_tokens_seen": 20447232,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.22764227642276422,
117
+ "grad_norm": 0.1677803248167038,
118
+ "learning_rate": 4.3778298271762995e-05,
119
+ "loss": 0.6077,
120
+ "num_input_tokens_seen": 22020096,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.24390243902439024,
125
+ "grad_norm": 0.15535381436347961,
126
+ "learning_rate": 4.2903804707859835e-05,
127
+ "loss": 0.5958,
128
+ "num_input_tokens_seen": 23592960,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.2601626016260163,
133
+ "grad_norm": 0.16249153017997742,
134
+ "learning_rate": 4.198183347243233e-05,
135
+ "loss": 0.5838,
136
+ "num_input_tokens_seen": 25165824,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.2764227642276423,
141
+ "grad_norm": 0.145711287856102,
142
+ "learning_rate": 4.101482946745439e-05,
143
+ "loss": 0.5629,
144
+ "num_input_tokens_seen": 26738688,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.2926829268292683,
149
+ "grad_norm": 0.12892590463161469,
150
+ "learning_rate": 4.000535701370921e-05,
151
+ "loss": 0.5848,
152
+ "num_input_tokens_seen": 28311552,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.3089430894308943,
157
+ "grad_norm": 0.12926466763019562,
158
+ "learning_rate": 3.895609305067162e-05,
159
+ "loss": 0.5772,
160
+ "num_input_tokens_seen": 29884416,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.3252032520325203,
165
+ "grad_norm": 0.12316538393497467,
166
+ "learning_rate": 3.7869820037745776e-05,
167
+ "loss": 0.5719,
168
+ "num_input_tokens_seen": 31457280,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.34146341463414637,
173
+ "grad_norm": 0.12052515894174576,
174
+ "learning_rate": 3.6749418575683e-05,
175
+ "loss": 0.5445,
176
+ "num_input_tokens_seen": 33030144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.35772357723577236,
181
+ "grad_norm": 0.12180831283330917,
182
+ "learning_rate": 3.5597859767746524e-05,
183
+ "loss": 0.556,
184
+ "num_input_tokens_seen": 34603008,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.37398373983739835,
189
+ "grad_norm": 0.12532484531402588,
190
+ "learning_rate": 3.4418197340879635e-05,
191
+ "loss": 0.5736,
192
+ "num_input_tokens_seen": 36175872,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.3902439024390244,
197
+ "grad_norm": 0.12291638553142548,
198
+ "learning_rate": 3.321355954777087e-05,
199
+ "loss": 0.535,
200
+ "num_input_tokens_seen": 37748736,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.4065040650406504,
205
+ "grad_norm": 0.11071067303419113,
206
+ "learning_rate": 3.1987140871290236e-05,
207
+ "loss": 0.5634,
208
+ "num_input_tokens_seen": 39321600,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.42276422764227645,
213
+ "grad_norm": 0.09884963929653168,
214
+ "learning_rate": 3.07421935532949e-05,
215
+ "loss": 0.5648,
216
+ "num_input_tokens_seen": 40894464,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.43902439024390244,
221
+ "grad_norm": 0.10612273216247559,
222
+ "learning_rate": 2.9482018970268393e-05,
223
+ "loss": 0.5467,
224
+ "num_input_tokens_seen": 42467328,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.45528455284552843,
229
+ "grad_norm": 0.1015135645866394,
230
+ "learning_rate": 2.8209958878663778e-05,
231
+ "loss": 0.5567,
232
+ "num_input_tokens_seen": 44040192,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.4715447154471545,
237
+ "grad_norm": 0.10951631516218185,
238
+ "learning_rate": 2.6929386553166164e-05,
239
+ "loss": 0.5847,
240
+ "num_input_tokens_seen": 45613056,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.4878048780487805,
245
+ "grad_norm": 0.09695735573768616,
246
+ "learning_rate": 2.564369784137472e-05,
247
+ "loss": 0.5429,
248
+ "num_input_tokens_seen": 47185920,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.5040650406504065,
253
+ "grad_norm": 0.09722153842449188,
254
+ "learning_rate": 2.4356302158625288e-05,
255
+ "loss": 0.5435,
256
+ "num_input_tokens_seen": 48758784,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.5203252032520326,
261
+ "grad_norm": 0.0972503125667572,
262
+ "learning_rate": 2.3070613446833842e-05,
263
+ "loss": 0.5482,
264
+ "num_input_tokens_seen": 50331648,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.5365853658536586,
269
+ "grad_norm": 0.09666866064071655,
270
+ "learning_rate": 2.1790041121336225e-05,
271
+ "loss": 0.5418,
272
+ "num_input_tokens_seen": 51904512,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.5528455284552846,
277
+ "grad_norm": 0.09581635892391205,
278
+ "learning_rate": 2.0517981029731616e-05,
279
+ "loss": 0.532,
280
+ "num_input_tokens_seen": 53477376,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.5691056910569106,
285
+ "grad_norm": 0.09590643644332886,
286
+ "learning_rate": 1.9257806446705116e-05,
287
+ "loss": 0.536,
288
+ "num_input_tokens_seen": 55050240,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.5853658536585366,
293
+ "grad_norm": 0.0966959148645401,
294
+ "learning_rate": 1.8012859128709766e-05,
295
+ "loss": 0.5314,
296
+ "num_input_tokens_seen": 56623104,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.6016260162601627,
301
+ "grad_norm": 0.09263308346271515,
302
+ "learning_rate": 1.6786440452229134e-05,
303
+ "loss": 0.5595,
304
+ "num_input_tokens_seen": 58195968,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.6178861788617886,
309
+ "grad_norm": 0.08845654875040054,
310
+ "learning_rate": 1.558180265912037e-05,
311
+ "loss": 0.5418,
312
+ "num_input_tokens_seen": 59768832,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.6341463414634146,
317
+ "grad_norm": 0.0915597528219223,
318
+ "learning_rate": 1.4402140232253486e-05,
319
+ "loss": 0.5438,
320
+ "num_input_tokens_seen": 61341696,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.6504065040650406,
325
+ "grad_norm": 0.08968537300825119,
326
+ "learning_rate": 1.325058142431701e-05,
327
+ "loss": 0.5239,
328
+ "num_input_tokens_seen": 62914560,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.6666666666666666,
333
+ "grad_norm": 0.0950733870267868,
334
+ "learning_rate": 1.213017996225424e-05,
335
+ "loss": 0.5459,
336
+ "num_input_tokens_seen": 64487424,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.6829268292682927,
341
+ "grad_norm": 0.09233593195676804,
342
+ "learning_rate": 1.1043906949328387e-05,
343
+ "loss": 0.5373,
344
+ "num_input_tokens_seen": 66060288,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.6991869918699187,
349
+ "grad_norm": 0.0939360037446022,
350
+ "learning_rate": 9.994642986290797e-06,
351
+ "loss": 0.5474,
352
+ "num_input_tokens_seen": 67633152,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.7154471544715447,
357
+ "grad_norm": 0.08978823572397232,
358
+ "learning_rate": 8.985170532545622e-06,
359
+ "loss": 0.5236,
360
+ "num_input_tokens_seen": 69206016,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.7317073170731707,
365
+ "grad_norm": 0.09436903893947601,
366
+ "learning_rate": 8.018166527567672e-06,
367
+ "loss": 0.5336,
368
+ "num_input_tokens_seen": 70778880,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.7479674796747967,
373
+ "grad_norm": 0.088426373898983,
374
+ "learning_rate": 7.096195292140173e-06,
375
+ "loss": 0.5198,
376
+ "num_input_tokens_seen": 72351744,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.7642276422764228,
381
+ "grad_norm": 0.09146667271852493,
382
+ "learning_rate": 6.221701728237009e-06,
383
+ "loss": 0.5419,
384
+ "num_input_tokens_seen": 73924608,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.7804878048780488,
389
+ "grad_norm": 0.0876329094171524,
390
+ "learning_rate": 5.397004835582242e-06,
391
+ "loss": 0.5544,
392
+ "num_input_tokens_seen": 75497472,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.7967479674796748,
397
+ "grad_norm": 0.09173890948295593,
398
+ "learning_rate": 4.624291562079719e-06,
399
+ "loss": 0.5689,
400
+ "num_input_tokens_seen": 77070336,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.8130081300813008,
405
+ "grad_norm": 0.09023137390613556,
406
+ "learning_rate": 3.90561100442036e-06,
407
+ "loss": 0.517,
408
+ "num_input_tokens_seen": 78643200,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.8292682926829268,
413
+ "grad_norm": 0.08453888446092606,
414
+ "learning_rate": 3.2428689742461188e-06,
415
+ "loss": 0.544,
416
+ "num_input_tokens_seen": 80216064,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.8455284552845529,
421
+ "grad_norm": 0.09456021338701248,
422
+ "learning_rate": 2.637822944280116e-06,
423
+ "loss": 0.5265,
424
+ "num_input_tokens_seen": 81788928,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.8617886178861789,
429
+ "grad_norm": 0.09165485203266144,
430
+ "learning_rate": 2.092077387824884e-06,
431
+ "loss": 0.5301,
432
+ "num_input_tokens_seen": 83361792,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.8780487804878049,
437
+ "grad_norm": 0.0885196402668953,
438
+ "learning_rate": 1.6070795239876618e-06,
439
+ "loss": 0.5357,
440
+ "num_input_tokens_seen": 84934656,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.8943089430894309,
445
+ "grad_norm": 0.09256651252508163,
446
+ "learning_rate": 1.1841154799154374e-06,
447
+ "loss": 0.522,
448
+ "num_input_tokens_seen": 86507520,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.9105691056910569,
453
+ "grad_norm": 0.0941980704665184,
454
+ "learning_rate": 8.243068802169906e-07,
455
+ "loss": 0.5282,
456
+ "num_input_tokens_seen": 88080384,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.926829268292683,
461
+ "grad_norm": 0.08401526510715485,
462
+ "learning_rate": 5.286078726160549e-07,
463
+ "loss": 0.5327,
464
+ "num_input_tokens_seen": 89653248,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.943089430894309,
469
+ "grad_norm": 0.08636080473661423,
470
+ "learning_rate": 2.978025977230736e-07,
471
+ "loss": 0.5237,
472
+ "num_input_tokens_seen": 91226112,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.959349593495935,
477
+ "grad_norm": 0.09349840134382248,
478
+ "learning_rate": 1.3250310963527358e-07,
479
+ "loss": 0.5499,
480
+ "num_input_tokens_seen": 92798976,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.975609756097561,
485
+ "grad_norm": 0.08632226288318634,
486
+ "learning_rate": 3.314775287923677e-08,
487
+ "loss": 0.5576,
488
+ "num_input_tokens_seen": 94371840,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.991869918699187,
493
+ "grad_norm": 0.09036959707736969,
494
+ "learning_rate": 0.0,
495
+ "loss": 0.5487,
496
+ "num_input_tokens_seen": 95944704,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.991869918699187,
501
+ "num_input_tokens_seen": 95944704,
502
+ "step": 61,
503
+ "total_flos": 4.0703306623541576e+18,
504
+ "train_loss": 0.5785222493234228,
505
+ "train_runtime": 9437.3939,
506
+ "train_samples_per_second": 2.499,
507
+ "train_steps_per_second": 0.006
508
+ }
509
+ ],
510
+ "logging_steps": 1,
511
+ "max_steps": 61,
512
+ "num_input_tokens_seen": 95944704,
513
+ "num_train_epochs": 1,
514
+ "save_steps": 1000,
515
+ "stateful_callbacks": {
516
+ "TrainerControl": {
517
+ "args": {
518
+ "should_epoch_stop": false,
519
+ "should_evaluate": false,
520
+ "should_log": false,
521
+ "should_save": true,
522
+ "should_training_stop": true
523
+ },
524
+ "attributes": {}
525
+ }
526
+ },
527
+ "total_flos": 4.0703306623541576e+18,
528
+ "train_batch_size": 16,
529
+ "trial_name": null,
530
+ "trial_params": null
531
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:444317418b08a04afeda97e23512c9220f7eff61887ad97eed28ba0f22a22c6f
3
+ size 5624
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_nlx_under8
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: Qwen/Qwen2.5-Coder-7B-Instruct
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nlx
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 1000
34
+ stage: sft
35
+ template: qwen
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff