File size: 6,826 Bytes
6a80a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os, subprocess
import gradio as gr
import shutil, time, torch, gc
from mega import Mega
from datetime import datetime
import pandas as pd
import os, sys, subprocess,  numpy as np
from pydub import AudioSegment

# Class to handle caching model urls from a spreadsheet
class CachedModels:
    def __init__(self):
        csv_url = "https://docs.google.com/spreadsheets/d/1tAUaQrEHYgRsm1Lvrnj14HFHDwJWl0Bd9x0QePewNco/export?format=csv&gid=1977693859"
        if os.path.exists("spreadsheet.csv"):
            self.cached_data = pd.read_csv("spreadsheet.csv") 
        else:
            self.cached_data = pd.read_csv(csv_url)
            self.cached_data.to_csv("spreadsheet.csv", index=False)
        # Cache model urls        
        self.models = {}
        for _, row in self.cached_data.iterrows():
            filename = row['Filename']
            url = None
            for value in row.values:
                if isinstance(value, str) and "huggingface" in value:
                    url = value
                    break
            if url:
                self.models[filename] = url
    # Get cached model urls    
    def get_models(self):
        return self.models
        
def show(path,ext,on_error=None):
    try:
        return list(filter(lambda x: x.endswith(ext), os.listdir(path)))
    except:
        return on_error
    
def run_subprocess(command):
    try:
        subprocess.run(command, check=True)
        return True, None
    except Exception as e:
        return False, e
        
def download_from_url(url=None, model=None):
    if not url:
        try:
            url = model[f'{model}']
        except:
            gr.Warning("Failed")
            return ''
    if model == '':
        try:
            model = url.split('/')[-1].split('?')[0]
        except:
            gr.Warning('Please name the model')
            return
    model = model.replace('.pth', '').replace('.index', '').replace('.zip', '')
    url = url.replace('/blob/main/', '/resolve/main/').strip()

    for directory in ["downloads", "unzips","zip"]:
        #shutil.rmtree(directory, ignore_errors=True)
        os.makedirs(directory, exist_ok=True)

    try:
        if url.endswith('.pth'):
            subprocess.run(["wget", url, "-O", f'assets/weights/{model}.pth'])
        elif url.endswith('.index'):
            os.makedirs(f'logs/{model}', exist_ok=True)
            subprocess.run(["wget", url, "-O", f'logs/{model}/added_{model}.index'])
        elif url.endswith('.zip'):
            subprocess.run(["wget", url, "-O", f'downloads/{model}.zip'])
        else:
            if "drive.google.com" in url:
                url = url.split('/')[0]
                subprocess.run(["gdown", url, "--fuzzy", "-O", f'downloads/{model}'])
            elif "mega.nz" in url:
                Mega().download_url(url, 'downloads')
            else:
                subprocess.run(["wget", url, "-O", f'downloads/{model}'])

        downloaded_file = next((f for f in os.listdir("downloads")), None)
        if downloaded_file:
            if downloaded_file.endswith(".zip"):
                shutil.unpack_archive(f'downloads/{downloaded_file}', "unzips", 'zip')
                for root, _, files in os.walk('unzips'):
                    for file in files:
                        file_path = os.path.join(root, file)
                        if file.endswith(".index"):
                            os.makedirs(f'logs/{model}', exist_ok=True)
                            shutil.copy2(file_path, f'logs/{model}')
                        elif file.endswith(".pth") and "G_" not in file and "D_" not in file:
                            shutil.copy(file_path, f'assets/weights/{model}.pth')
            elif downloaded_file.endswith(".pth"):
                shutil.copy(f'downloads/{downloaded_file}', f'assets/weights/{model}.pth')
            elif downloaded_file.endswith(".index"):
                os.makedirs(f'logs/{model}', exist_ok=True)
                shutil.copy(f'downloads/{downloaded_file}', f'logs/{model}/added_{model}.index')
            else:
                gr.Warning("Failed to download file")
                return 'Failed'

        gr.Info("Done")
    except Exception as e:
        gr.Warning(f"There's been an error: {str(e)}")
    finally:
        shutil.rmtree("downloads", ignore_errors=True)
        shutil.rmtree("unzips", ignore_errors=True)
        shutil.rmtree("zip", ignore_errors=True)
        return 'Done'
        
def speak(audio, text):
    print(f"({audio}, {text})")
    current_dir = os.getcwd()
    os.chdir('./gpt_sovits_demo')
    process = subprocess.Popen([
        "python", "./zero.py",
        "--input_file", audio,
        "--audio_lang", "English", 
        "--text", text,
        "--text_lang", "English"
    ], stdout=subprocess.PIPE, text=True)
    
    for line in process.stdout:
        line = line.strip()
        if "All keys matched successfully" in line:
            continue
        if line.startswith("(") and line.endswith(")"):
            path, finished = line[1:-1].split(", ")
            if finished:
                os.chdir(current_dir)
                return path
    os.chdir(current_dir)
    return None


def stereo_process(audio1,audio2,choice):
    audio = audio1 if choice == "Input" else audio2
    print(audio)
    sample_rate, audio_array = audio
    if len(audio_array.shape) == 1:
        audio_bytes = audio_array.tobytes()
        segment = AudioSegment(
            data=audio_bytes,
            sample_width=audio_array.dtype.itemsize,  # 2 bytes for int16
            frame_rate=sample_rate,  # Use the sample rate from your tuple
            channels=1  # Adjust if your audio has more channels
            )
        samples = np.array(segment.get_array_of_samples())
        delay_samples = int(segment.frame_rate * (0.6 / 1000.0))
        left_channel = np.zeros_like(samples)
        right_channel = samples
        left_channel[delay_samples:] = samples[:-delay_samples]
        stereo_samples = np.column_stack((left_channel, right_channel))
        return (sample_rate, stereo_samples.astype(np.int16))
    else:
        return audio
    

    def split_audio(input_file, output_folder, chunk_duration=5.12):
        os.makedirs(output_folder, exist_ok=True)
        ffmpeg_command = f"ffmpeg -i {input_file} -f segment -segment_time {chunk_duration} -c:a pcm_s16le {output_folder}/out%03d.wav"
        subprocess.run(ffmpeg_command, shell=True, check=True)

    def create_file_list(output_folder):
        file_list = os.path.join(output_folder, "file_list.txt")
        with open(file_list, "w") as f:
            for filename in sorted(os.listdir(output_folder)):
                if filename.endswith(".wav"):
                    f.write(os.path.join(output_folder, filename) + "\n")
        return file_list