julien-rsbrg commited on
Commit
6d292a9
·
1 Parent(s): 9232290

first commit of ppo-LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 279.74 +/- 19.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc954ab1ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc954ab1d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc954ab1dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc954ab1e50>", "_build": "<function ActorCriticPolicy._build at 0x7fc954ab1ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc954ab1f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc954ab5040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc954ab50d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc954ab5160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc954ab51f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc954ab5280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc954aae4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671445397362655770, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYeVD6DVAg/4Pj6vRCGjr4soFg9+DP9vQAAAAAAAAAA2lSovUiBxzmlExA3t4JoMjK2pjtuHDG2AACAPwAAgD+A3389FNqDP65ZCz5Z7r++6XGGPMjUfLwAAAAAAAAAAE0wND0dvNA+8WkEvn4Vjb4OmxO9pYrMOwAAAAAAAAAAZlGPPYVT67ly8Q00ax66L2SfgTreTbyzAACAPwAAgD9azpe9aSu1Pr82JbzQdX6+BRXnvKiAGDwAAAAAAAAAAJpxdT4xbKA/rQsGP5Gw8b5U4os+DLu9PQAAAAAAAAAAxl+JPkhitD5VsOq+qfSUvl43azwPQJK+AAAAAAAAAAAdDqO+hzhXPyIjrzuiq/i+mXgvvgYMHD4AAAAAAAAAADPLhTt035q8cgrNPP2gd73R1gc+G6BFPgAAgD8AAIA/GtwNvRtVpj1eRkY+R1BSvnNGez2FnaE9AAAAAAAAAAC20I8+blw0P1uhrjy0xqm+2QFYPlxRGr0AAAAAAAAAAOYlbb2koBC5zSMFPLTM+TyekbM6m2gCPAAAgD8AAIA/OvoiPjQ5lz3CqkG+/s+EvhbsuzuDrD+8AAAAAAAAAAA63qE+ixosP5qHyrwBv9C+flVoPpZ/vbwAAAAAAAAAAKCzkT79x3G9oDEiPi1Epry/fM6+MhKIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhj3t8NeQUECUhpRSlIwBbJRLwowBdJRHQKGTaIcBEKF1fZQoaAZoCWgPQwgIjzaO2BBtQJSGlFKUaBVNDgFoFkdAoZPDVtoBaXV9lChoBmgJaA9DCJP+XgqPo3FAlIaUUpRoFU01AWgWR0ChlCX/Pw/gdX2UKGgGaAloD0MI+MJkquDqb0CUhpRSlGgVTSIBaBZHQKGUUiOearp1fZQoaAZoCWgPQwiveOqRhtJuQJSGlFKUaBVNJgFoFkdAoZRZ3eN1hnV9lChoBmgJaA9DCMi1oWKc93FAlIaUUpRoFUv5aBZHQKGUfXYlIEt1fZQoaAZoCWgPQwiT/fM0YPNtQJSGlFKUaBVNMQFoFkdAoZSiWTot+XV9lChoBmgJaA9DCJboLLMIUXJAlIaUUpRoFUvuaBZHQKGVAYQarFR1fZQoaAZoCWgPQwimYI2z6eJvQJSGlFKUaBVNAAFoFkdAoZUxUrCm/HV9lChoBmgJaA9DCDi6SneXbnFAlIaUUpRoFUv3aBZHQKGV6tq59Vp1fZQoaAZoCWgPQwjbhlEQfMhwQJSGlFKUaBVNIQFoFkdAoZZeV/tpmHV9lChoBmgJaA9DCFM+BFWjrXJAlIaUUpRoFUvkaBZHQKGWqhg3Lmp1fZQoaAZoCWgPQwiASSpTzBVuQJSGlFKUaBVL+mgWR0ChluJuMuOCdX2UKGgGaAloD0MIUkfH1cgbUkCUhpRSlGgVS7poFkdAoZcA0/GEPHV9lChoBmgJaA9DCJvj3CbcIU5AlIaUUpRoFUvNaBZHQKGXIqIacZt1fZQoaAZoCWgPQwi371F//XRyQJSGlFKUaBVNEgFoFkdAoZcwlfJFLHV9lChoBmgJaA9DCJDBilMtK3FAlIaUUpRoFU0pAWgWR0Chl2nk1dgOdX2UKGgGaAloD0MIA5gycMCZcUCUhpRSlGgVTSEBaBZHQKGXdLB9Cu51fZQoaAZoCWgPQwgaFM0D2ERxQJSGlFKUaBVL+GgWR0ChmA27nPmgdX2UKGgGaAloD0MIujDSi1pmb0CUhpRSlGgVTTkBaBZHQKGYRrvb48F1fZQoaAZoCWgPQwhAUG7bdx9vQJSGlFKUaBVNHQFoFkdAoZhpl8PWhHV9lChoBmgJaA9DCExSmWKOsHBAlIaUUpRoFU0hAWgWR0ChmMa3iJfqdX2UKGgGaAloD0MIbRrba4EqcUCUhpRSlGgVTR0BaBZHQKGZIfthNM51fZQoaAZoCWgPQwjUYvAw7W9zQJSGlFKUaBVNFAFoFkdAoZk3DNyHVXV9lChoBmgJaA9DCC9szVbeanJAlIaUUpRoFUvvaBZHQKGZxOYYzi11fZQoaAZoCWgPQwjhz/BmDSlyQJSGlFKUaBVNGAFoFkdAoZn1ygf2b3V9lChoBmgJaA9DCIQtdvssGHNAlIaUUpRoFUvZaBZHQKGaF6VMVUN1fZQoaAZoCWgPQwjaHOc24WRxQJSGlFKUaBVNBgFoFkdAoZpWzByjpXV9lChoBmgJaA9DCHQLXYlA/TlAlIaUUpRoFU3oA2gWR0Chmof/FR51dX2UKGgGaAloD0MIpG38iUpfckCUhpRSlGgVTQoBaBZHQKGapFAmiQF1fZQoaAZoCWgPQwiny2Jis8twQJSGlFKUaBVNGQFoFkdAoZrAsiB5HHV9lChoBmgJaA9DCDdsW5TZT3FAlIaUUpRoFU0TAWgWR0ChmuH/LkjpdX2UKGgGaAloD0MIcO8a9CVRcUCUhpRSlGgVTSIBaBZHQKGbQUW2w3Z1fZQoaAZoCWgPQwhQx2MGKrFwQJSGlFKUaBVL5mgWR0Chm1ASvkimdX2UKGgGaAloD0MIzxCOWXbLcUCUhpRSlGgVTTwBaBZHQKGbmjIq9Xd1fZQoaAZoCWgPQwhcd/NUh25wQJSGlFKUaBVNDwFoFkdAoZvn863iJnV9lChoBmgJaA9DCB/axwr+1XFAlIaUUpRoFUv6aBZHQKGb+YgJTl11fZQoaAZoCWgPQwgOMV7zKjlvQJSGlFKUaBVNMgFoFkdAoZwCGzru6XV9lChoBmgJaA9DCCzX22bq63FAlIaUUpRoFU0nAWgWR0ChnNZJK8L8dX2UKGgGaAloD0MIxAd2/BeVcUCUhpRSlGgVS/JoFkdAoZ0bUCq6v3V9lChoBmgJaA9DCEz+J3937HBAlIaUUpRoFU0bAWgWR0ChnZuEmICVdX2UKGgGaAloD0MI5BJHHgi1cECUhpRSlGgVTWABaBZHQKGd1tm+TNd1fZQoaAZoCWgPQwj+tFGdTr1wQJSGlFKUaBVNOQFoFkdAoZ3izJIUanV9lChoBmgJaA9DCBgjEoXW63FAlIaUUpRoFU0VAWgWR0ChnfTkp7TldX2UKGgGaAloD0MIPlsHB3s/ckCUhpRSlGgVTRUBaBZHQKGnpnPE87p1fZQoaAZoCWgPQwjTo6mezDNxQJSGlFKUaBVNQQFoFkdAoagKqXF98nV9lChoBmgJaA9DCPYlGw82dHBAlIaUUpRoFU0oAWgWR0ChqBhBZ6lddX2UKGgGaAloD0MIalA0D2DncECUhpRSlGgVTRIBaBZHQKGoMk/KQq91fZQoaAZoCWgPQwj9M4P4gPRwQJSGlFKUaBVNZAFoFkdAoaiYmXw9aHV9lChoBmgJaA9DCPnbniBxqnBAlIaUUpRoFU0jAWgWR0ChqMchC+lCdX2UKGgGaAloD0MIRs1XyUeZckCUhpRSlGgVTQsBaBZHQKGoz8zAN5N1fZQoaAZoCWgPQwjZIf5hC+5yQJSGlFKUaBVNCQFoFkdAoajcVnEl3XV9lChoBmgJaA9DCJrsn6eB425AlIaUUpRoFU1BAWgWR0ChqZyvkiljdX2UKGgGaAloD0MIGRu62R89bECUhpRSlGgVTQ0BaBZHQKGp1jo6jnF1fZQoaAZoCWgPQwi30muzsfpyQJSGlFKUaBVNCAFoFkdAoaoBOafBe3V9lChoBmgJaA9DCFOXjGOkE3JAlIaUUpRoFUvwaBZHQKGqSophF3J1fZQoaAZoCWgPQwgldJfEWYlwQJSGlFKUaBVNDQFoFkdAoarQ64lQdnV9lChoBmgJaA9DCJfIBWcwXHJAlIaUUpRoFU0rAWgWR0Chqu7aRISUdX2UKGgGaAloD0MIbFuU2WCTcUCUhpRSlGgVTesBaBZHQKGrJX2/SIB1fZQoaAZoCWgPQwirsBnggsZwQJSGlFKUaBVNDAFoFkdAoau81n/T9nV9lChoBmgJaA9DCGWqYFRS4nBAlIaUUpRoFU1cAWgWR0Chq+/Z26kJdX2UKGgGaAloD0MIvmw7bc0ocECUhpRSlGgVS/doFkdAoawKaLGaQXV9lChoBmgJaA9DCBiyutVzmk1AlIaUUpRoFUvpaBZHQKGsI+UyHmB1fZQoaAZoCWgPQwhJ1XYTPJFwQJSGlFKUaBVNLgFoFkdAoaxfRb8m8nV9lChoBmgJaA9DCJPH0/LD/XBAlIaUUpRoFU1cAWgWR0ChrH/vv0AcdX2UKGgGaAloD0MIodtLGiNVb0CUhpRSlGgVTQ0BaBZHQKGsnObiIcl1fZQoaAZoCWgPQwgcmNwochdxQJSGlFKUaBVNIwFoFkdAoazknw5NoXV9lChoBmgJaA9DCDKtTWN7DXBAlIaUUpRoFU0NAWgWR0ChrbdNWU8ndX2UKGgGaAloD0MI7YFWYIjKcUCUhpRSlGgVS/xoFkdAoa31lRP423V9lChoBmgJaA9DCGBzDp4J31JAlIaUUpRoFUvHaBZHQKGuohV2icp1fZQoaAZoCWgPQwir6A/NfAJxQJSGlFKUaBVNBQFoFkdAoa6nPPcBVHV9lChoBmgJaA9DCLHAV3QronFAlIaUUpRoFU0CAWgWR0Chrrod2gWadX2UKGgGaAloD0MIR3Nk5ZelckCUhpRSlGgVTWcBaBZHQKGuz7P6bfB1fZQoaAZoCWgPQwi/KaxU0JRyQJSGlFKUaBVNGgFoFkdAoa9J6nivPnV9lChoBmgJaA9DCFRVaCDWnHJAlIaUUpRoFUvzaBZHQKGvslZ5iVl1fZQoaAZoCWgPQwgKhnMN80hxQJSGlFKUaBVNlAFoFkdAoa/zf51vEXV9lChoBmgJaA9DCEw3iUHgg3BAlIaUUpRoFU0cAWgWR0ChsCCCJ40NdX2UKGgGaAloD0MIoMIRpBKOcUCUhpRSlGgVTRcBaBZHQKGwl+85CF91fZQoaAZoCWgPQwjvHMpQFShwQJSGlFKUaBVNZQJoFkdAobDEwtapxXV9lChoBmgJaA9DCFFsBU2LN3FAlIaUUpRoFU0JAWgWR0ChsMjgqEvkdX2UKGgGaAloD0MIz6EMVTGxRUCUhpRSlGgVS75oFkdAobDPqzJIUnV9lChoBmgJaA9DCP5kjA/zxXFAlIaUUpRoFU0fAWgWR0ChsNKpLmITdX2UKGgGaAloD0MIJ8KGp5c4cECUhpRSlGgVTVEBaBZHQKGw9CAMDwJ1fZQoaAZoCWgPQwghy4KJv5pwQJSGlFKUaBVNTwFoFkdAobEywB5ooXV9lChoBmgJaA9DCDl/EwrR/3BAlIaUUpRoFUvyaBZHQKGxOKsMiKR1fZQoaAZoCWgPQwj68CxBBqhxQJSGlFKUaBVL8WgWR0ChsfyowVTKdX2UKGgGaAloD0MIdxVSfhLDcECUhpRSlGgVTQkBaBZHQKGyOsLfDUF1fZQoaAZoCWgPQwgnvW987UBTQJSGlFKUaBVLxWgWR0Chsm/YBeXzdX2UKGgGaAloD0MIXMtkOJ4FcUCUhpRSlGgVS/5oFkdAobKkxEfDDXV9lChoBmgJaA9DCCXs20kExHFAlIaUUpRoFUvsaBZHQKGyuiKziS91fZQoaAZoCWgPQwiPcjCbwPVwQJSGlFKUaBVNPQFoFkdAobLdAC4jKXV9lChoBmgJaA9DCBt/orJhVUBAlIaUUpRoFUvZaBZHQKGzb/0dzXB1fZQoaAZoCWgPQwiNfF7xVPJvQJSGlFKUaBVNCQFoFkdAobN6cTakAXV9lChoBmgJaA9DCK/MW3WdN3BAlIaUUpRoFU0AAWgWR0Chs/dOh0yQdX2UKGgGaAloD0MIMbH5uDblcECUhpRSlGgVTQwBaBZHQKGz9w1BMSN1fZQoaAZoCWgPQwhZTdcTHatyQJSGlFKUaBVNDQFoFkdAobQqpJf6XXV9lChoBmgJaA9DCAu3fCSla3FAlIaUUpRoFU2ZAWgWR0ChtEE0iyIIdX2UKGgGaAloD0MIlZ9U+/TEbUCUhpRSlGgVTQsBaBZHQKG0Su/1xsF1fZQoaAZoCWgPQwijW6/pwepyQJSGlFKUaBVNGQFoFkdAobS4+r2g4HV9lChoBmgJaA9DCG02VmKef0RAlIaUUpRoFUvDaBZHQKG0wAAAAAB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5d0958cbfc0b5f52bf1b3bfb71a93101be985a2fe8aadc63a9db771d986c22
3
+ size 147184
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc954ab1ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc954ab1d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc954ab1dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc954ab1e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc954ab1ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc954ab1f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc954ab5040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc954ab50d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc954ab5160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc954ab51f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc954ab5280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc954aae4b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671445397362655770,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYeVD6DVAg/4Pj6vRCGjr4soFg9+DP9vQAAAAAAAAAA2lSovUiBxzmlExA3t4JoMjK2pjtuHDG2AACAPwAAgD+A3389FNqDP65ZCz5Z7r++6XGGPMjUfLwAAAAAAAAAAE0wND0dvNA+8WkEvn4Vjb4OmxO9pYrMOwAAAAAAAAAAZlGPPYVT67ly8Q00ax66L2SfgTreTbyzAACAPwAAgD9azpe9aSu1Pr82JbzQdX6+BRXnvKiAGDwAAAAAAAAAAJpxdT4xbKA/rQsGP5Gw8b5U4os+DLu9PQAAAAAAAAAAxl+JPkhitD5VsOq+qfSUvl43azwPQJK+AAAAAAAAAAAdDqO+hzhXPyIjrzuiq/i+mXgvvgYMHD4AAAAAAAAAADPLhTt035q8cgrNPP2gd73R1gc+G6BFPgAAgD8AAIA/GtwNvRtVpj1eRkY+R1BSvnNGez2FnaE9AAAAAAAAAAC20I8+blw0P1uhrjy0xqm+2QFYPlxRGr0AAAAAAAAAAOYlbb2koBC5zSMFPLTM+TyekbM6m2gCPAAAgD8AAIA/OvoiPjQ5lz3CqkG+/s+EvhbsuzuDrD+8AAAAAAAAAAA63qE+ixosP5qHyrwBv9C+flVoPpZ/vbwAAAAAAAAAAKCzkT79x3G9oDEiPi1Epry/fM6+MhKIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhj3t8NeQUECUhpRSlIwBbJRLwowBdJRHQKGTaIcBEKF1fZQoaAZoCWgPQwgIjzaO2BBtQJSGlFKUaBVNDgFoFkdAoZPDVtoBaXV9lChoBmgJaA9DCJP+XgqPo3FAlIaUUpRoFU01AWgWR0ChlCX/Pw/gdX2UKGgGaAloD0MI+MJkquDqb0CUhpRSlGgVTSIBaBZHQKGUUiOearp1fZQoaAZoCWgPQwiveOqRhtJuQJSGlFKUaBVNJgFoFkdAoZRZ3eN1hnV9lChoBmgJaA9DCMi1oWKc93FAlIaUUpRoFUv5aBZHQKGUfXYlIEt1fZQoaAZoCWgPQwiT/fM0YPNtQJSGlFKUaBVNMQFoFkdAoZSiWTot+XV9lChoBmgJaA9DCJboLLMIUXJAlIaUUpRoFUvuaBZHQKGVAYQarFR1fZQoaAZoCWgPQwimYI2z6eJvQJSGlFKUaBVNAAFoFkdAoZUxUrCm/HV9lChoBmgJaA9DCDi6SneXbnFAlIaUUpRoFUv3aBZHQKGV6tq59Vp1fZQoaAZoCWgPQwjbhlEQfMhwQJSGlFKUaBVNIQFoFkdAoZZeV/tpmHV9lChoBmgJaA9DCFM+BFWjrXJAlIaUUpRoFUvkaBZHQKGWqhg3Lmp1fZQoaAZoCWgPQwiASSpTzBVuQJSGlFKUaBVL+mgWR0ChluJuMuOCdX2UKGgGaAloD0MIUkfH1cgbUkCUhpRSlGgVS7poFkdAoZcA0/GEPHV9lChoBmgJaA9DCJvj3CbcIU5AlIaUUpRoFUvNaBZHQKGXIqIacZt1fZQoaAZoCWgPQwi371F//XRyQJSGlFKUaBVNEgFoFkdAoZcwlfJFLHV9lChoBmgJaA9DCJDBilMtK3FAlIaUUpRoFU0pAWgWR0Chl2nk1dgOdX2UKGgGaAloD0MIA5gycMCZcUCUhpRSlGgVTSEBaBZHQKGXdLB9Cu51fZQoaAZoCWgPQwgaFM0D2ERxQJSGlFKUaBVL+GgWR0ChmA27nPmgdX2UKGgGaAloD0MIujDSi1pmb0CUhpRSlGgVTTkBaBZHQKGYRrvb48F1fZQoaAZoCWgPQwhAUG7bdx9vQJSGlFKUaBVNHQFoFkdAoZhpl8PWhHV9lChoBmgJaA9DCExSmWKOsHBAlIaUUpRoFU0hAWgWR0ChmMa3iJfqdX2UKGgGaAloD0MIbRrba4EqcUCUhpRSlGgVTR0BaBZHQKGZIfthNM51fZQoaAZoCWgPQwjUYvAw7W9zQJSGlFKUaBVNFAFoFkdAoZk3DNyHVXV9lChoBmgJaA9DCC9szVbeanJAlIaUUpRoFUvvaBZHQKGZxOYYzi11fZQoaAZoCWgPQwjhz/BmDSlyQJSGlFKUaBVNGAFoFkdAoZn1ygf2b3V9lChoBmgJaA9DCIQtdvssGHNAlIaUUpRoFUvZaBZHQKGaF6VMVUN1fZQoaAZoCWgPQwjaHOc24WRxQJSGlFKUaBVNBgFoFkdAoZpWzByjpXV9lChoBmgJaA9DCHQLXYlA/TlAlIaUUpRoFU3oA2gWR0Chmof/FR51dX2UKGgGaAloD0MIpG38iUpfckCUhpRSlGgVTQoBaBZHQKGapFAmiQF1fZQoaAZoCWgPQwiny2Jis8twQJSGlFKUaBVNGQFoFkdAoZrAsiB5HHV9lChoBmgJaA9DCDdsW5TZT3FAlIaUUpRoFU0TAWgWR0ChmuH/LkjpdX2UKGgGaAloD0MIcO8a9CVRcUCUhpRSlGgVTSIBaBZHQKGbQUW2w3Z1fZQoaAZoCWgPQwhQx2MGKrFwQJSGlFKUaBVL5mgWR0Chm1ASvkimdX2UKGgGaAloD0MIzxCOWXbLcUCUhpRSlGgVTTwBaBZHQKGbmjIq9Xd1fZQoaAZoCWgPQwhcd/NUh25wQJSGlFKUaBVNDwFoFkdAoZvn863iJnV9lChoBmgJaA9DCB/axwr+1XFAlIaUUpRoFUv6aBZHQKGb+YgJTl11fZQoaAZoCWgPQwgOMV7zKjlvQJSGlFKUaBVNMgFoFkdAoZwCGzru6XV9lChoBmgJaA9DCCzX22bq63FAlIaUUpRoFU0nAWgWR0ChnNZJK8L8dX2UKGgGaAloD0MIxAd2/BeVcUCUhpRSlGgVS/JoFkdAoZ0bUCq6v3V9lChoBmgJaA9DCEz+J3937HBAlIaUUpRoFU0bAWgWR0ChnZuEmICVdX2UKGgGaAloD0MI5BJHHgi1cECUhpRSlGgVTWABaBZHQKGd1tm+TNd1fZQoaAZoCWgPQwj+tFGdTr1wQJSGlFKUaBVNOQFoFkdAoZ3izJIUanV9lChoBmgJaA9DCBgjEoXW63FAlIaUUpRoFU0VAWgWR0ChnfTkp7TldX2UKGgGaAloD0MIPlsHB3s/ckCUhpRSlGgVTRUBaBZHQKGnpnPE87p1fZQoaAZoCWgPQwjTo6mezDNxQJSGlFKUaBVNQQFoFkdAoagKqXF98nV9lChoBmgJaA9DCPYlGw82dHBAlIaUUpRoFU0oAWgWR0ChqBhBZ6lddX2UKGgGaAloD0MIalA0D2DncECUhpRSlGgVTRIBaBZHQKGoMk/KQq91fZQoaAZoCWgPQwj9M4P4gPRwQJSGlFKUaBVNZAFoFkdAoaiYmXw9aHV9lChoBmgJaA9DCPnbniBxqnBAlIaUUpRoFU0jAWgWR0ChqMchC+lCdX2UKGgGaAloD0MIRs1XyUeZckCUhpRSlGgVTQsBaBZHQKGoz8zAN5N1fZQoaAZoCWgPQwjZIf5hC+5yQJSGlFKUaBVNCQFoFkdAoajcVnEl3XV9lChoBmgJaA9DCJrsn6eB425AlIaUUpRoFU1BAWgWR0ChqZyvkiljdX2UKGgGaAloD0MIGRu62R89bECUhpRSlGgVTQ0BaBZHQKGp1jo6jnF1fZQoaAZoCWgPQwi30muzsfpyQJSGlFKUaBVNCAFoFkdAoaoBOafBe3V9lChoBmgJaA9DCFOXjGOkE3JAlIaUUpRoFUvwaBZHQKGqSophF3J1fZQoaAZoCWgPQwgldJfEWYlwQJSGlFKUaBVNDQFoFkdAoarQ64lQdnV9lChoBmgJaA9DCJfIBWcwXHJAlIaUUpRoFU0rAWgWR0Chqu7aRISUdX2UKGgGaAloD0MIbFuU2WCTcUCUhpRSlGgVTesBaBZHQKGrJX2/SIB1fZQoaAZoCWgPQwirsBnggsZwQJSGlFKUaBVNDAFoFkdAoau81n/T9nV9lChoBmgJaA9DCGWqYFRS4nBAlIaUUpRoFU1cAWgWR0Chq+/Z26kJdX2UKGgGaAloD0MIvmw7bc0ocECUhpRSlGgVS/doFkdAoawKaLGaQXV9lChoBmgJaA9DCBiyutVzmk1AlIaUUpRoFUvpaBZHQKGsI+UyHmB1fZQoaAZoCWgPQwhJ1XYTPJFwQJSGlFKUaBVNLgFoFkdAoaxfRb8m8nV9lChoBmgJaA9DCJPH0/LD/XBAlIaUUpRoFU1cAWgWR0ChrH/vv0AcdX2UKGgGaAloD0MIodtLGiNVb0CUhpRSlGgVTQ0BaBZHQKGsnObiIcl1fZQoaAZoCWgPQwgcmNwochdxQJSGlFKUaBVNIwFoFkdAoazknw5NoXV9lChoBmgJaA9DCDKtTWN7DXBAlIaUUpRoFU0NAWgWR0ChrbdNWU8ndX2UKGgGaAloD0MI7YFWYIjKcUCUhpRSlGgVS/xoFkdAoa31lRP423V9lChoBmgJaA9DCGBzDp4J31JAlIaUUpRoFUvHaBZHQKGuohV2icp1fZQoaAZoCWgPQwir6A/NfAJxQJSGlFKUaBVNBQFoFkdAoa6nPPcBVHV9lChoBmgJaA9DCLHAV3QronFAlIaUUpRoFU0CAWgWR0Chrrod2gWadX2UKGgGaAloD0MIR3Nk5ZelckCUhpRSlGgVTWcBaBZHQKGuz7P6bfB1fZQoaAZoCWgPQwi/KaxU0JRyQJSGlFKUaBVNGgFoFkdAoa9J6nivPnV9lChoBmgJaA9DCFRVaCDWnHJAlIaUUpRoFUvzaBZHQKGvslZ5iVl1fZQoaAZoCWgPQwgKhnMN80hxQJSGlFKUaBVNlAFoFkdAoa/zf51vEXV9lChoBmgJaA9DCEw3iUHgg3BAlIaUUpRoFU0cAWgWR0ChsCCCJ40NdX2UKGgGaAloD0MIoMIRpBKOcUCUhpRSlGgVTRcBaBZHQKGwl+85CF91fZQoaAZoCWgPQwjvHMpQFShwQJSGlFKUaBVNZQJoFkdAobDEwtapxXV9lChoBmgJaA9DCFFsBU2LN3FAlIaUUpRoFU0JAWgWR0ChsMjgqEvkdX2UKGgGaAloD0MIz6EMVTGxRUCUhpRSlGgVS75oFkdAobDPqzJIUnV9lChoBmgJaA9DCP5kjA/zxXFAlIaUUpRoFU0fAWgWR0ChsNKpLmITdX2UKGgGaAloD0MIJ8KGp5c4cECUhpRSlGgVTVEBaBZHQKGw9CAMDwJ1fZQoaAZoCWgPQwghy4KJv5pwQJSGlFKUaBVNTwFoFkdAobEywB5ooXV9lChoBmgJaA9DCDl/EwrR/3BAlIaUUpRoFUvyaBZHQKGxOKsMiKR1fZQoaAZoCWgPQwj68CxBBqhxQJSGlFKUaBVL8WgWR0ChsfyowVTKdX2UKGgGaAloD0MIdxVSfhLDcECUhpRSlGgVTQkBaBZHQKGyOsLfDUF1fZQoaAZoCWgPQwgnvW987UBTQJSGlFKUaBVLxWgWR0Chsm/YBeXzdX2UKGgGaAloD0MIXMtkOJ4FcUCUhpRSlGgVS/5oFkdAobKkxEfDDXV9lChoBmgJaA9DCCXs20kExHFAlIaUUpRoFUvsaBZHQKGyuiKziS91fZQoaAZoCWgPQwiPcjCbwPVwQJSGlFKUaBVNPQFoFkdAobLdAC4jKXV9lChoBmgJaA9DCBt/orJhVUBAlIaUUpRoFUvZaBZHQKGzb/0dzXB1fZQoaAZoCWgPQwiNfF7xVPJvQJSGlFKUaBVNCQFoFkdAobN6cTakAXV9lChoBmgJaA9DCK/MW3WdN3BAlIaUUpRoFU0AAWgWR0Chs/dOh0yQdX2UKGgGaAloD0MIMbH5uDblcECUhpRSlGgVTQwBaBZHQKGz9w1BMSN1fZQoaAZoCWgPQwhZTdcTHatyQJSGlFKUaBVNDQFoFkdAobQqpJf6XXV9lChoBmgJaA9DCAu3fCSla3FAlIaUUpRoFU2ZAWgWR0ChtEE0iyIIdX2UKGgGaAloD0MIlZ9U+/TEbUCUhpRSlGgVTQsBaBZHQKG0Su/1xsF1fZQoaAZoCWgPQwijW6/pwepyQJSGlFKUaBVNGQFoFkdAobS4+r2g4HV9lChoBmgJaA9DCG02VmKef0RAlIaUUpRoFUvDaBZHQKG0wAAAAAB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79381a8ec332f4efc9ba4e23e584d351469ae1606172b24f85ef8e0d805140b3
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14f8e56a59e0bb550998e976010051f977fbfa82027520b8846f6aacaf543764
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (216 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 279.74413426473194, "std_reward": 19.740042233858908, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T10:41:36.251041"}