from typing import Dict, List, Any import torch from torch import autocast from huggingface_hub import hf_hub_download from diffusers import DiffusionPipeline import base64 from io import BytesIO from cog_sdxl.dataset_and_utils import TokenEmbeddingsHandler device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device ~>", device) class EndpointHandler: def __init__(self, path=""): print("path ~>", path) self.pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 if device.type == "cuda" else None, variant="fp16", ).to(device) self.pipe.load_lora_weights("SvenN/sdxl-emoji", weight_name="lora.safetensors") text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2] tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2] embedding_path = hf_hub_download( repo_id="SvenN/sdxl-emoji", filename="embeddings.pti", repo_type="model" ) embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers) embhandler.load_embeddings(embedding_path) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`dict`:. base64 encoded image """ inputs = data.pop("inputs", data) # Automatically add trigger tokens to the beginning of the prompt full_prompt = f"A {inputs}" images = self.pipe( full_prompt, cross_attention_kwargs={"scale": 0.8}, ).images image = images[0] # encode image as base 64 buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()) # postprocess the prediction return {"image": img_str.decode()} if __name__ == "__main__": handler = EndpointHandler() print(handler) output = handler({"inputs": "emoji of a tiger face, white background"}) print(output)