File size: 13,427 Bytes
3ab8901 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# Bootstrapped from Huggingface diffuser's code.
import fnmatch
import json
import math
import os
import shutil
from typing import List, Optional
import numpy as np
import torch
import torch.utils.checkpoint
from diffusers.models.attention_processor import LoRAAttnProcessor, LoRAAttnProcessor2_0
from diffusers.optimization import get_scheduler
from safetensors.torch import save_file
from tqdm.auto import tqdm
from dataset_and_utils import (
PreprocessedDataset,
TokenEmbeddingsHandler,
load_models,
unet_attn_processors_state_dict,
)
def main(
pretrained_model_name_or_path: Optional[
str
] = "./cache", # "stabilityai/stable-diffusion-xl-base-1.0",
revision: Optional[str] = None,
instance_data_dir: Optional[str] = "./dataset/zeke/captions.csv",
output_dir: str = "ft_masked_coke",
seed: Optional[int] = 42,
resolution: int = 512,
crops_coords_top_left_h: int = 0,
crops_coords_top_left_w: int = 0,
train_batch_size: int = 1,
do_cache: bool = True,
num_train_epochs: int = 600,
max_train_steps: Optional[int] = None,
checkpointing_steps: int = 500000, # default to no checkpoints
gradient_accumulation_steps: int = 1, # todo
unet_learning_rate: float = 1e-5,
ti_lr: float = 3e-4,
lora_lr: float = 1e-4,
pivot_halfway: bool = True,
scale_lr: bool = False,
lr_scheduler: str = "constant",
lr_warmup_steps: int = 500,
lr_num_cycles: int = 1,
lr_power: float = 1.0,
dataloader_num_workers: int = 0,
max_grad_norm: float = 1.0, # todo with tests
allow_tf32: bool = True,
mixed_precision: Optional[str] = "bf16",
device: str = "cuda:0",
token_dict: dict = {"TOKEN": "<s0>"},
inserting_list_tokens: List[str] = ["<s0>"],
verbose: bool = True,
is_lora: bool = True,
lora_rank: int = 32,
) -> None:
if allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if not seed:
seed = np.random.randint(0, 2**32 - 1)
print("Using seed", seed)
torch.manual_seed(seed)
weight_dtype = torch.float32
if mixed_precision == "fp16":
weight_dtype = torch.float16
elif mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if scale_lr:
unet_learning_rate = (
unet_learning_rate * gradient_accumulation_steps * train_batch_size
)
(
tokenizer_one,
tokenizer_two,
noise_scheduler,
text_encoder_one,
text_encoder_two,
vae,
unet,
) = load_models(pretrained_model_name_or_path, revision, device, weight_dtype)
print("# PTI : Loaded models")
# Initialize new tokens for training.
embedding_handler = TokenEmbeddingsHandler(
[text_encoder_one, text_encoder_two], [tokenizer_one, tokenizer_two]
)
embedding_handler.initialize_new_tokens(inserting_toks=inserting_list_tokens)
text_encoders = [text_encoder_one, text_encoder_two]
unet_param_to_optimize = []
# fine tune only attn weights
text_encoder_parameters = []
for text_encoder in text_encoders:
for name, param in text_encoder.named_parameters():
if "token_embedding" in name:
param.requires_grad = True
print(name)
text_encoder_parameters.append(param)
else:
param.requires_grad = False
if not is_lora:
WHITELIST_PATTERNS = [
# "*.attn*.weight",
# "*ff*.weight",
"*"
] # TODO : make this a parameter
BLACKLIST_PATTERNS = ["*.norm*.weight", "*time*"]
unet_param_to_optimize_names = []
for name, param in unet.named_parameters():
if any(
fnmatch.fnmatch(name, pattern) for pattern in WHITELIST_PATTERNS
) and not any(
fnmatch.fnmatch(name, pattern) for pattern in BLACKLIST_PATTERNS
):
param.requires_grad_(True)
unet_param_to_optimize_names.append(name)
print(f"Training: {name}")
else:
param.requires_grad_(False)
# Optimizer creation
params_to_optimize = [
{
"params": unet_param_to_optimize,
"lr": unet_learning_rate,
},
{
"params": text_encoder_parameters,
"lr": ti_lr,
"weight_decay": 1e-3,
},
]
else:
# Do lora-training instead.
unet.requires_grad_(False)
unet_lora_attn_procs = {}
unet_lora_parameters = []
for name, attn_processor in unet.attn_processors.items():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
module = LoRAAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=lora_rank,
)
unet_lora_attn_procs[name] = module
module.to(device)
unet_lora_parameters.extend(module.parameters())
unet.set_attn_processor(unet_lora_attn_procs)
params_to_optimize = [
{
"params": unet_lora_parameters,
"lr": lora_lr,
},
{
"params": text_encoder_parameters,
"lr": ti_lr,
"weight_decay": 1e-3,
},
]
optimizer = torch.optim.AdamW(
params_to_optimize,
weight_decay=1e-4,
)
print(f"# PTI : Loading dataset, do_cache {do_cache}")
train_dataset = PreprocessedDataset(
instance_data_dir,
tokenizer_one,
tokenizer_two,
vae.float(),
do_cache=True,
substitute_caption_map=token_dict,
)
print("# PTI : Loaded dataset")
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=dataloader_num_workers,
)
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
if max_train_steps is None:
max_train_steps = num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
num_cycles=lr_num_cycles,
power=lr_power,
)
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
total_batch_size = train_batch_size * gradient_accumulation_steps
if verbose:
print(f"# PTI : Running training ")
print(f"# PTI : Num examples = {len(train_dataset)}")
print(f"# PTI : Num batches each epoch = {len(train_dataloader)}")
print(f"# PTI : Num Epochs = {num_train_epochs}")
print(f"# PTI : Instantaneous batch size per device = {train_batch_size}")
print(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
print(f"# PTI : Gradient Accumulation steps = {gradient_accumulation_steps}")
print(f"# PTI : Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps))
checkpoint_dir = "checkpoint"
if os.path.exists(checkpoint_dir):
shutil.rmtree(checkpoint_dir)
os.makedirs(f"{checkpoint_dir}/unet", exist_ok=True)
os.makedirs(f"{checkpoint_dir}/embeddings", exist_ok=True)
for epoch in range(first_epoch, num_train_epochs):
if pivot_halfway:
if epoch == num_train_epochs // 2:
print("# PTI : Pivot halfway")
# remove text encoder parameters from optimizer
params_to_optimize = params_to_optimize[:1]
optimizer = torch.optim.AdamW(
params_to_optimize,
weight_decay=1e-4,
)
unet.train()
for step, batch in enumerate(train_dataloader):
progress_bar.update(1)
progress_bar.set_description(f"# PTI :step: {global_step}, epoch: {epoch}")
global_step += 1
(tok1, tok2), vae_latent, mask = batch
vae_latent = vae_latent.to(weight_dtype)
# tokens to text embeds
prompt_embeds_list = []
for tok, text_encoder in zip((tok1, tok2), text_encoders):
prompt_embeds_out = text_encoder(
tok.to(text_encoder.device),
output_hidden_states=True,
)
pooled_prompt_embeds = prompt_embeds_out[0]
prompt_embeds = prompt_embeds_out.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
# Create Spatial-dimensional conditions.
original_size = (resolution, resolution)
target_size = (resolution, resolution)
crops_coords_top_left = (crops_coords_top_left_h, crops_coords_top_left_w)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(device, dtype=prompt_embeds.dtype).repeat(
bs_embed, 1
)
added_kw = {"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}
# Sample noise that we'll add to the latents
noise = torch.randn_like(vae_latent)
bsz = vae_latent.shape[0]
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bsz,),
device=vae_latent.device,
)
timesteps = timesteps.long()
noisy_model_input = noise_scheduler.add_noise(vae_latent, noise, timesteps)
# Predict the noise residual
model_pred = unet(
noisy_model_input,
timesteps,
prompt_embeds,
added_cond_kwargs=added_kw,
).sample
loss = (model_pred - noise).pow(2) * mask
loss = loss.mean()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# every step, we reset the embeddings to the original embeddings.
for idx, text_encoder in enumerate(text_encoders):
embedding_handler.retract_embeddings()
if global_step % checkpointing_steps == 0:
# save the required params of unet with safetensor
if not is_lora:
tensors = {
name: param
for name, param in unet.named_parameters()
if name in unet_param_to_optimize_names
}
save_file(
tensors,
f"{checkpoint_dir}/unet/checkpoint-{global_step}.unet.safetensors",
)
else:
lora_tensors = unet_attn_processors_state_dict(unet)
save_file(
lora_tensors,
f"{checkpoint_dir}/unet/checkpoint-{global_step}.lora.safetensors",
)
embedding_handler.save_embeddings(
f"{checkpoint_dir}/embeddings/checkpoint-{global_step}.pti",
)
# final_save
print("Saving final model for return")
if not is_lora:
tensors = {
name: param
for name, param in unet.named_parameters()
if name in unet_param_to_optimize_names
}
save_file(
tensors,
f"{output_dir}/unet.safetensors",
)
else:
lora_tensors = unet_attn_processors_state_dict(unet)
save_file(
lora_tensors,
f"{output_dir}/lora.safetensors",
)
embedding_handler.save_embeddings(
f"{output_dir}/embeddings.pti",
)
to_save = token_dict
with open(f"{output_dir}/special_params.json", "w") as f:
json.dump(to_save, f)
if __name__ == "__main__":
main()
|