File size: 2,014 Bytes
f1b8023 a4135dc f1b8023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co/julenalvaro/cat_vs_dogs_vit_model/blob/main/dog.png
example_title: dog
- src: >-
https://huggingface.co/julenalvaro/cat_vs_dogs_vit_model/blob/main/dog.png
example_title: cat
model-index:
- name: cat_vs_dogs_vit_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cat_vs_dogs_vit_model
This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6518
- Accuracy: 0.6095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.771 | 0.5 | 500 | 0.6933 | 0.4995 |
| 0.6967 | 1.0 | 1000 | 0.6882 | 0.556 |
| 0.695 | 1.5 | 1500 | 0.6728 | 0.581 |
| 0.6733 | 2.0 | 2000 | 0.6950 | 0.5915 |
| 0.6768 | 2.5 | 2500 | 0.6694 | 0.5855 |
| 0.6639 | 3.0 | 3000 | 0.6829 | 0.5795 |
| 0.652 | 3.5 | 3500 | 0.6637 | 0.5925 |
| 0.642 | 4.0 | 4000 | 0.6518 | 0.6095 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|