File size: 2,014 Bytes
f1b8023
 
 
 
 
a4135dc
 
 
 
 
 
 
 
f1b8023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
tags:
- generated_from_trainer
metrics:
- accuracy
widget:
  - src: >-
      https://huggingface.co/julenalvaro/cat_vs_dogs_vit_model/blob/main/dog.png
    example_title: dog
  - src: >-
      https://huggingface.co/julenalvaro/cat_vs_dogs_vit_model/blob/main/dog.png
    example_title: cat
  
model-index:
- name: cat_vs_dogs_vit_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cat_vs_dogs_vit_model

This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6518
- Accuracy: 0.6095

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.771         | 0.5   | 500  | 0.6933          | 0.4995   |
| 0.6967        | 1.0   | 1000 | 0.6882          | 0.556    |
| 0.695         | 1.5   | 1500 | 0.6728          | 0.581    |
| 0.6733        | 2.0   | 2000 | 0.6950          | 0.5915   |
| 0.6768        | 2.5   | 2500 | 0.6694          | 0.5855   |
| 0.6639        | 3.0   | 3000 | 0.6829          | 0.5795   |
| 0.652         | 3.5   | 3500 | 0.6637          | 0.5925   |
| 0.642         | 4.0   | 4000 | 0.6518          | 0.6095   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2