--- library_name: transformers license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_ST_DA_1800 results: [] --- # MatSciBERT_ST_DA_1800 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1671 - Precision: 0.8613 - Recall: 0.8455 - F1: 0.8533 - Accuracy: 0.9746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0809 | 1.0 | 1050 | 0.1024 | 0.8455 | 0.8230 | 0.8341 | 0.9719 | | 0.0424 | 2.0 | 2100 | 0.1023 | 0.8371 | 0.8365 | 0.8368 | 0.9714 | | 0.025 | 3.0 | 3150 | 0.1397 | 0.8397 | 0.8223 | 0.8309 | 0.9702 | | 0.0142 | 4.0 | 4200 | 0.1403 | 0.8592 | 0.8379 | 0.8484 | 0.9736 | | 0.0074 | 5.0 | 5250 | 0.1271 | 0.8727 | 0.8641 | 0.8684 | 0.9771 | | 0.0047 | 6.0 | 6300 | 0.1430 | 0.8742 | 0.8581 | 0.8661 | 0.9769 | | 0.0023 | 7.0 | 7350 | 0.1777 | 0.8578 | 0.8310 | 0.8442 | 0.9733 | | 0.0015 | 8.0 | 8400 | 0.1524 | 0.8637 | 0.8581 | 0.8609 | 0.9760 | | 0.0013 | 9.0 | 9450 | 0.1683 | 0.8609 | 0.8441 | 0.8524 | 0.9745 | | 0.0008 | 10.0 | 10500 | 0.1671 | 0.8613 | 0.8455 | 0.8533 | 0.9746 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1