--- license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_BIOMAT_NER3600 results: [] --- # MatSciBERT_BIOMAT_NER3600 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4022 - Precision: 0.9708 - Recall: 0.9629 - F1: 0.9669 - Accuracy: 0.9638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1486 | 1.0 | 601 | 0.2452 | 0.9584 | 0.9499 | 0.9541 | 0.9494 | | 0.0464 | 2.0 | 1202 | 0.2348 | 0.9658 | 0.9590 | 0.9624 | 0.9589 | | 0.0265 | 3.0 | 1803 | 0.2845 | 0.9659 | 0.9599 | 0.9629 | 0.9592 | | 0.0164 | 4.0 | 2404 | 0.3016 | 0.9689 | 0.9613 | 0.9650 | 0.9619 | | 0.0063 | 5.0 | 3005 | 0.3531 | 0.9699 | 0.9623 | 0.9661 | 0.9631 | | 0.0043 | 6.0 | 3606 | 0.3540 | 0.9701 | 0.9620 | 0.9660 | 0.9628 | | 0.0033 | 7.0 | 4207 | 0.3730 | 0.9708 | 0.9630 | 0.9669 | 0.9638 | | 0.0023 | 8.0 | 4808 | 0.3796 | 0.9710 | 0.9631 | 0.9670 | 0.9640 | | 0.0019 | 9.0 | 5409 | 0.3892 | 0.9712 | 0.9634 | 0.9673 | 0.9642 | | 0.0011 | 10.0 | 6010 | 0.4022 | 0.9708 | 0.9629 | 0.9669 | 0.9638 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1