End of training
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: m3rg-iitd/matscibert
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: MatSciBERT_BIOMAT_NER3600
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# MatSciBERT_BIOMAT_NER3600
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4022
|
24 |
+
- Precision: 0.9708
|
25 |
+
- Recall: 0.9629
|
26 |
+
- F1: 0.9669
|
27 |
+
- Accuracy: 0.9638
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.1486 | 1.0 | 601 | 0.2452 | 0.9584 | 0.9499 | 0.9541 | 0.9494 |
|
59 |
+
| 0.0464 | 2.0 | 1202 | 0.2348 | 0.9658 | 0.9590 | 0.9624 | 0.9589 |
|
60 |
+
| 0.0265 | 3.0 | 1803 | 0.2845 | 0.9659 | 0.9599 | 0.9629 | 0.9592 |
|
61 |
+
| 0.0164 | 4.0 | 2404 | 0.3016 | 0.9689 | 0.9613 | 0.9650 | 0.9619 |
|
62 |
+
| 0.0063 | 5.0 | 3005 | 0.3531 | 0.9699 | 0.9623 | 0.9661 | 0.9631 |
|
63 |
+
| 0.0043 | 6.0 | 3606 | 0.3540 | 0.9701 | 0.9620 | 0.9660 | 0.9628 |
|
64 |
+
| 0.0033 | 7.0 | 4207 | 0.3730 | 0.9708 | 0.9630 | 0.9669 | 0.9638 |
|
65 |
+
| 0.0023 | 8.0 | 4808 | 0.3796 | 0.9710 | 0.9631 | 0.9670 | 0.9640 |
|
66 |
+
| 0.0019 | 9.0 | 5409 | 0.3892 | 0.9712 | 0.9634 | 0.9673 | 0.9642 |
|
67 |
+
| 0.0011 | 10.0 | 6010 | 0.4022 | 0.9708 | 0.9629 | 0.9669 | 0.9638 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.42.4
|
73 |
+
- Pytorch 2.4.0+cu121
|
74 |
+
- Datasets 2.21.0
|
75 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437387124
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ba128dbfffe69efb4f51c5c63d727ccd99caaaf5c23215c9b1c089666ec85c5
|
3 |
size 437387124
|
runs/Sep01_18-48-23_56b51f633514/events.out.tfevents.1725216507.56b51f633514.1071.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59b176f4d09a79e5837969e20ef288488486efe8c581b12ff382cd568985151f
|
3 |
+
size 13550
|