--- license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_BIOMAT_NER2 results: [] --- # MatSciBERT_BIOMAT_NER2 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5316 - Precision: 0.9596 - Recall: 0.9442 - F1: 0.9518 - Accuracy: 0.9428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1601 | 1.0 | 793 | 0.2740 | 0.9603 | 0.9459 | 0.9530 | 0.9444 | | 0.0276 | 2.0 | 1586 | 0.3631 | 0.9599 | 0.9447 | 0.9522 | 0.9431 | | 0.0139 | 3.0 | 2379 | 0.3745 | 0.9602 | 0.9445 | 0.9523 | 0.9430 | | 0.0054 | 4.0 | 3172 | 0.4634 | 0.9601 | 0.9441 | 0.9521 | 0.9429 | | 0.0039 | 5.0 | 3965 | 0.4709 | 0.9594 | 0.9440 | 0.9517 | 0.9423 | | 0.0018 | 6.0 | 4758 | 0.5042 | 0.9587 | 0.9440 | 0.9513 | 0.9426 | | 0.0011 | 7.0 | 5551 | 0.5223 | 0.9598 | 0.9439 | 0.9518 | 0.9425 | | 0.0009 | 8.0 | 6344 | 0.5241 | 0.9594 | 0.9438 | 0.9515 | 0.9424 | | 0.0004 | 9.0 | 7137 | 0.5277 | 0.9595 | 0.9441 | 0.9517 | 0.9428 | | 0.0004 | 10.0 | 7930 | 0.5316 | 0.9596 | 0.9442 | 0.9518 | 0.9428 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1