End of training
Browse files- README.md +75 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google-bert/bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: BERT_BIOMAT_NER_1000
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# BERT_BIOMAT_NER_1000
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3920
|
24 |
+
- Precision: 0.9495
|
25 |
+
- Recall: 0.9444
|
26 |
+
- F1: 0.9470
|
27 |
+
- Accuracy: 0.9380
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 211 | 0.2669 | 0.9407 | 0.9352 | 0.9380 | 0.9275 |
|
59 |
+
| No log | 2.0 | 422 | 0.2809 | 0.9457 | 0.9432 | 0.9444 | 0.9343 |
|
60 |
+
| 0.2064 | 3.0 | 633 | 0.3114 | 0.9472 | 0.9454 | 0.9463 | 0.9353 |
|
61 |
+
| 0.2064 | 4.0 | 844 | 0.3323 | 0.9491 | 0.9422 | 0.9456 | 0.9358 |
|
62 |
+
| 0.0481 | 5.0 | 1055 | 0.3478 | 0.9493 | 0.9441 | 0.9467 | 0.9382 |
|
63 |
+
| 0.0481 | 6.0 | 1266 | 0.3731 | 0.9486 | 0.9438 | 0.9462 | 0.9374 |
|
64 |
+
| 0.0481 | 7.0 | 1477 | 0.3723 | 0.9491 | 0.9445 | 0.9468 | 0.9379 |
|
65 |
+
| 0.0201 | 8.0 | 1688 | 0.3830 | 0.9489 | 0.9443 | 0.9466 | 0.9369 |
|
66 |
+
| 0.0201 | 9.0 | 1899 | 0.3873 | 0.9503 | 0.9448 | 0.9475 | 0.9378 |
|
67 |
+
| 0.0106 | 10.0 | 2110 | 0.3920 | 0.9495 | 0.9444 | 0.9470 | 0.9380 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.42.4
|
73 |
+
- Pytorch 2.4.0+cu121
|
74 |
+
- Datasets 2.21.0
|
75 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435642228
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:261a267a481cfad8b32f96a6737810810d34f9a469c99b72d9f38278c75f152b
|
3 |
size 435642228
|