Commit
·
19b2b55
1
Parent(s):
f738bfe
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-finetuned-gtzan
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilhubert-finetuned-gtzan
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6228
|
22 |
+
- Accuracy: 0.85
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 4e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 2.2841 | 0.98 | 28 | 2.2578 | 0.22 |
|
57 |
+
| 2.108 | 2.0 | 57 | 2.0031 | 0.55 |
|
58 |
+
| 1.7117 | 2.98 | 85 | 1.6220 | 0.65 |
|
59 |
+
| 1.4624 | 4.0 | 114 | 1.4061 | 0.7 |
|
60 |
+
| 1.2607 | 4.98 | 142 | 1.1969 | 0.69 |
|
61 |
+
| 1.1162 | 6.0 | 171 | 1.0955 | 0.75 |
|
62 |
+
| 1.0 | 6.98 | 199 | 0.9670 | 0.78 |
|
63 |
+
| 0.8864 | 8.0 | 228 | 0.9192 | 0.77 |
|
64 |
+
| 0.8583 | 8.98 | 256 | 0.8475 | 0.78 |
|
65 |
+
| 0.8147 | 10.0 | 285 | 0.8214 | 0.77 |
|
66 |
+
| 0.6572 | 10.98 | 313 | 0.7754 | 0.78 |
|
67 |
+
| 0.5958 | 12.0 | 342 | 0.7187 | 0.79 |
|
68 |
+
| 0.4196 | 12.98 | 370 | 0.6732 | 0.83 |
|
69 |
+
| 0.4515 | 14.0 | 399 | 0.7272 | 0.8 |
|
70 |
+
| 0.4256 | 14.98 | 427 | 0.6507 | 0.84 |
|
71 |
+
| 0.3734 | 16.0 | 456 | 0.6587 | 0.83 |
|
72 |
+
| 0.3541 | 16.98 | 484 | 0.6244 | 0.86 |
|
73 |
+
| 0.312 | 18.0 | 513 | 0.6363 | 0.84 |
|
74 |
+
| 0.3287 | 18.98 | 541 | 0.6226 | 0.86 |
|
75 |
+
| 0.313 | 19.65 | 560 | 0.6228 | 0.85 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.30.2
|
81 |
+
- Pytorch 2.0.1+cu118
|
82 |
+
- Datasets 2.13.1
|
83 |
+
- Tokenizers 0.13.3
|