--- tags: - mteb model-index: - name: pythia-14m_mean results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 70.73134328358208 - type: ap value: 32.35996836729783 - type: f1 value: 64.2137087561157 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 62.291220556745174 - type: ap value: 76.5427302441011 - type: f1 value: 60.37703210343267 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 67.57871064467767 - type: ap value: 17.03033311712744 - type: f1 value: 54.821750631894986 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 62.51605995717344 - type: ap value: 14.367489440317666 - type: f1 value: 50.48473578289779 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 57.567425000000014 - type: ap value: 54.53026421737829 - type: f1 value: 56.60093061259046 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 29.172000000000004 - type: f1 value: 28.264998641170465 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 25.157999999999998 - type: f1 value: 23.033533062569987 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 26.840000000000003 - type: f1 value: 25.693413738086402 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 26.491999999999997 - type: f1 value: 25.6252880863665 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 24.448000000000004 - type: f1 value: 23.86460242225935 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 26.412000000000003 - type: f1 value: 25.779710231390755 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 5.761 - type: map_at_10 value: 10.267 - type: map_at_100 value: 11.065999999999999 - type: map_at_1000 value: 11.16 - type: map_at_3 value: 8.642 - type: map_at_5 value: 9.474 - type: mrr_at_1 value: 6.046 - type: mrr_at_10 value: 10.365 - type: mrr_at_100 value: 11.178 - type: mrr_at_1000 value: 11.272 - type: mrr_at_3 value: 8.713 - type: mrr_at_5 value: 9.587 - type: ndcg_at_1 value: 5.761 - type: ndcg_at_10 value: 13.055 - type: ndcg_at_100 value: 17.526 - type: ndcg_at_1000 value: 20.578 - type: ndcg_at_3 value: 9.616 - type: ndcg_at_5 value: 11.128 - type: precision_at_1 value: 5.761 - type: precision_at_10 value: 2.212 - type: precision_at_100 value: 0.44400000000000006 - type: precision_at_1000 value: 0.06999999999999999 - type: precision_at_3 value: 4.149 - type: precision_at_5 value: 3.229 - type: recall_at_1 value: 5.761 - type: recall_at_10 value: 22.119 - type: recall_at_100 value: 44.381 - type: recall_at_1000 value: 69.70100000000001 - type: recall_at_3 value: 12.447 - type: recall_at_5 value: 16.145 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 25.92658946113241 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 13.902183567893395 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 47.93210378051478 - type: mrr value: 60.70318339708921 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 49.57650220181508 - type: cos_sim_spearman value: 51.842145113866636 - type: euclidean_pearson value: 41.2188173176347 - type: euclidean_spearman value: 41.16840792962046 - type: manhattan_pearson value: 42.73893519020435 - type: manhattan_spearman value: 44.384746276312534 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 46.03896103896104 - type: f1 value: 44.54083818845286 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 23.113393015706908 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 12.624675113307488 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 10.105 - type: map_at_10 value: 13.364 - type: map_at_100 value: 13.987 - type: map_at_1000 value: 14.08 - type: map_at_3 value: 12.447 - type: map_at_5 value: 12.992999999999999 - type: mrr_at_1 value: 12.876000000000001 - type: mrr_at_10 value: 16.252 - type: mrr_at_100 value: 16.926 - type: mrr_at_1000 value: 17.004 - type: mrr_at_3 value: 15.235999999999999 - type: mrr_at_5 value: 15.744 - type: ndcg_at_1 value: 12.876000000000001 - type: ndcg_at_10 value: 15.634999999999998 - type: ndcg_at_100 value: 19.173000000000002 - type: ndcg_at_1000 value: 22.168 - type: ndcg_at_3 value: 14.116999999999999 - type: ndcg_at_5 value: 14.767 - type: precision_at_1 value: 12.876000000000001 - type: precision_at_10 value: 2.761 - type: precision_at_100 value: 0.5579999999999999 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 6.676 - type: precision_at_5 value: 4.635 - type: recall_at_1 value: 10.105 - type: recall_at_10 value: 19.767000000000003 - type: recall_at_100 value: 36.448 - type: recall_at_1000 value: 58.623000000000005 - type: recall_at_3 value: 15.087 - type: recall_at_5 value: 17.076 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 7.249999999999999 - type: map_at_10 value: 9.41 - type: map_at_100 value: 9.903 - type: map_at_1000 value: 9.993 - type: map_at_3 value: 8.693 - type: map_at_5 value: 9.052 - type: mrr_at_1 value: 9.299 - type: mrr_at_10 value: 11.907 - type: mrr_at_100 value: 12.424 - type: mrr_at_1000 value: 12.503 - type: mrr_at_3 value: 10.945 - type: mrr_at_5 value: 11.413 - type: ndcg_at_1 value: 9.299 - type: ndcg_at_10 value: 11.278 - type: ndcg_at_100 value: 13.904 - type: ndcg_at_1000 value: 16.642000000000003 - type: ndcg_at_3 value: 9.956 - type: ndcg_at_5 value: 10.488 - type: precision_at_1 value: 9.299 - type: precision_at_10 value: 2.166 - type: precision_at_100 value: 0.45399999999999996 - type: precision_at_1000 value: 0.089 - type: precision_at_3 value: 4.798 - type: precision_at_5 value: 3.427 - type: recall_at_1 value: 7.249999999999999 - type: recall_at_10 value: 14.285 - type: recall_at_100 value: 26.588 - type: recall_at_1000 value: 46.488 - type: recall_at_3 value: 10.309 - type: recall_at_5 value: 11.756 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 11.57 - type: map_at_10 value: 15.497 - type: map_at_100 value: 16.036 - type: map_at_1000 value: 16.122 - type: map_at_3 value: 14.309 - type: map_at_5 value: 14.895 - type: mrr_at_1 value: 13.354 - type: mrr_at_10 value: 17.408 - type: mrr_at_100 value: 17.936 - type: mrr_at_1000 value: 18.015 - type: mrr_at_3 value: 16.123 - type: mrr_at_5 value: 16.735 - type: ndcg_at_1 value: 13.354 - type: ndcg_at_10 value: 18.071 - type: ndcg_at_100 value: 21.017 - type: ndcg_at_1000 value: 23.669999999999998 - type: ndcg_at_3 value: 15.644 - type: ndcg_at_5 value: 16.618 - type: precision_at_1 value: 13.354 - type: precision_at_10 value: 2.94 - type: precision_at_100 value: 0.481 - type: precision_at_1000 value: 0.076 - type: precision_at_3 value: 7.001 - type: precision_at_5 value: 4.765 - type: recall_at_1 value: 11.57 - type: recall_at_10 value: 24.147 - type: recall_at_100 value: 38.045 - type: recall_at_1000 value: 58.648 - type: recall_at_3 value: 17.419999999999998 - type: recall_at_5 value: 19.875999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 4.463 - type: map_at_10 value: 6.091 - type: map_at_100 value: 6.548 - type: map_at_1000 value: 6.622 - type: map_at_3 value: 5.461 - type: map_at_5 value: 5.768 - type: mrr_at_1 value: 4.746 - type: mrr_at_10 value: 6.431000000000001 - type: mrr_at_100 value: 6.941 - type: mrr_at_1000 value: 7.016 - type: mrr_at_3 value: 5.763 - type: mrr_at_5 value: 6.101999999999999 - type: ndcg_at_1 value: 4.746 - type: ndcg_at_10 value: 7.19 - type: ndcg_at_100 value: 9.604 - type: ndcg_at_1000 value: 12.086 - type: ndcg_at_3 value: 5.88 - type: ndcg_at_5 value: 6.429 - type: precision_at_1 value: 4.746 - type: precision_at_10 value: 1.141 - type: precision_at_100 value: 0.249 - type: precision_at_1000 value: 0.049 - type: precision_at_3 value: 2.448 - type: precision_at_5 value: 1.7850000000000001 - type: recall_at_1 value: 4.463 - type: recall_at_10 value: 10.33 - type: recall_at_100 value: 21.578 - type: recall_at_1000 value: 41.404 - type: recall_at_3 value: 6.816999999999999 - type: recall_at_5 value: 8.06 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 1.521 - type: map_at_10 value: 2.439 - type: map_at_100 value: 2.785 - type: map_at_1000 value: 2.858 - type: map_at_3 value: 2.091 - type: map_at_5 value: 2.2560000000000002 - type: mrr_at_1 value: 2.114 - type: mrr_at_10 value: 3.216 - type: mrr_at_100 value: 3.6319999999999997 - type: mrr_at_1000 value: 3.712 - type: mrr_at_3 value: 2.778 - type: mrr_at_5 value: 2.971 - type: ndcg_at_1 value: 2.114 - type: ndcg_at_10 value: 3.1910000000000003 - type: ndcg_at_100 value: 5.165 - type: ndcg_at_1000 value: 7.607 - type: ndcg_at_3 value: 2.456 - type: ndcg_at_5 value: 2.7439999999999998 - type: precision_at_1 value: 2.114 - type: precision_at_10 value: 0.634 - type: precision_at_100 value: 0.189 - type: precision_at_1000 value: 0.049 - type: precision_at_3 value: 1.202 - type: precision_at_5 value: 0.8959999999999999 - type: recall_at_1 value: 1.521 - type: recall_at_10 value: 4.8 - type: recall_at_100 value: 13.877 - type: recall_at_1000 value: 32.1 - type: recall_at_3 value: 2.806 - type: recall_at_5 value: 3.5520000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 7.449999999999999 - type: map_at_10 value: 10.065 - type: map_at_100 value: 10.507 - type: map_at_1000 value: 10.599 - type: map_at_3 value: 9.017 - type: map_at_5 value: 9.603 - type: mrr_at_1 value: 9.336 - type: mrr_at_10 value: 12.589 - type: mrr_at_100 value: 13.086 - type: mrr_at_1000 value: 13.161000000000001 - type: mrr_at_3 value: 11.373 - type: mrr_at_5 value: 12.084999999999999 - type: ndcg_at_1 value: 9.336 - type: ndcg_at_10 value: 12.299 - type: ndcg_at_100 value: 14.780999999999999 - type: ndcg_at_1000 value: 17.632 - type: ndcg_at_3 value: 10.302 - type: ndcg_at_5 value: 11.247 - type: precision_at_1 value: 9.336 - type: precision_at_10 value: 2.271 - type: precision_at_100 value: 0.42300000000000004 - type: precision_at_1000 value: 0.08099999999999999 - type: precision_at_3 value: 4.909 - type: precision_at_5 value: 3.5999999999999996 - type: recall_at_1 value: 7.449999999999999 - type: recall_at_10 value: 16.891000000000002 - type: recall_at_100 value: 28.050000000000004 - type: recall_at_1000 value: 49.267 - type: recall_at_3 value: 11.187999999999999 - type: recall_at_5 value: 13.587 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 4.734 - type: map_at_10 value: 7.045999999999999 - type: map_at_100 value: 7.564 - type: map_at_1000 value: 7.6499999999999995 - type: map_at_3 value: 6.21 - type: map_at_5 value: 6.617000000000001 - type: mrr_at_1 value: 5.936 - type: mrr_at_10 value: 8.624 - type: mrr_at_100 value: 9.193 - type: mrr_at_1000 value: 9.28 - type: mrr_at_3 value: 7.725 - type: mrr_at_5 value: 8.147 - type: ndcg_at_1 value: 5.936 - type: ndcg_at_10 value: 8.81 - type: ndcg_at_100 value: 11.694 - type: ndcg_at_1000 value: 14.526 - type: ndcg_at_3 value: 7.140000000000001 - type: ndcg_at_5 value: 7.8020000000000005 - type: precision_at_1 value: 5.936 - type: precision_at_10 value: 1.701 - type: precision_at_100 value: 0.366 - type: precision_at_1000 value: 0.07200000000000001 - type: precision_at_3 value: 3.463 - type: precision_at_5 value: 2.557 - type: recall_at_1 value: 4.734 - type: recall_at_10 value: 12.733 - type: recall_at_100 value: 25.982 - type: recall_at_1000 value: 47.233999999999995 - type: recall_at_3 value: 8.018 - type: recall_at_5 value: 9.762 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 4.293 - type: map_at_10 value: 6.146999999999999 - type: map_at_100 value: 6.487 - type: map_at_1000 value: 6.544999999999999 - type: map_at_3 value: 5.6930000000000005 - type: map_at_5 value: 5.869 - type: mrr_at_1 value: 5.061 - type: mrr_at_10 value: 7.1690000000000005 - type: mrr_at_100 value: 7.542 - type: mrr_at_1000 value: 7.5969999999999995 - type: mrr_at_3 value: 6.646000000000001 - type: mrr_at_5 value: 6.8229999999999995 - type: ndcg_at_1 value: 5.061 - type: ndcg_at_10 value: 7.396 - type: ndcg_at_100 value: 9.41 - type: ndcg_at_1000 value: 11.386000000000001 - type: ndcg_at_3 value: 6.454 - type: ndcg_at_5 value: 6.718 - type: precision_at_1 value: 5.061 - type: precision_at_10 value: 1.319 - type: precision_at_100 value: 0.262 - type: precision_at_1000 value: 0.047 - type: precision_at_3 value: 3.0669999999999997 - type: precision_at_5 value: 1.994 - type: recall_at_1 value: 4.293 - type: recall_at_10 value: 10.221 - type: recall_at_100 value: 19.744999999999997 - type: recall_at_1000 value: 35.399 - type: recall_at_3 value: 7.507999999999999 - type: recall_at_5 value: 8.275 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 3.519 - type: map_at_10 value: 4.768 - type: map_at_100 value: 5.034000000000001 - type: map_at_1000 value: 5.087 - type: map_at_3 value: 4.308 - type: map_at_5 value: 4.565 - type: mrr_at_1 value: 4.474 - type: mrr_at_10 value: 6.045 - type: mrr_at_100 value: 6.361999999999999 - type: mrr_at_1000 value: 6.417000000000001 - type: mrr_at_3 value: 5.483 - type: mrr_at_5 value: 5.81 - type: ndcg_at_1 value: 4.474 - type: ndcg_at_10 value: 5.799 - type: ndcg_at_100 value: 7.344 - type: ndcg_at_1000 value: 9.141 - type: ndcg_at_3 value: 4.893 - type: ndcg_at_5 value: 5.309 - type: precision_at_1 value: 4.474 - type: precision_at_10 value: 1.06 - type: precision_at_100 value: 0.217 - type: precision_at_1000 value: 0.045 - type: precision_at_3 value: 2.306 - type: precision_at_5 value: 1.7000000000000002 - type: recall_at_1 value: 3.519 - type: recall_at_10 value: 7.75 - type: recall_at_100 value: 15.049999999999999 - type: recall_at_1000 value: 28.779 - type: recall_at_3 value: 5.18 - type: recall_at_5 value: 6.245 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 6.098 - type: map_at_10 value: 7.918 - type: map_at_100 value: 8.229000000000001 - type: map_at_1000 value: 8.293000000000001 - type: map_at_3 value: 7.138999999999999 - type: map_at_5 value: 7.646 - type: mrr_at_1 value: 7.090000000000001 - type: mrr_at_10 value: 9.293 - type: mrr_at_100 value: 9.669 - type: mrr_at_1000 value: 9.734 - type: mrr_at_3 value: 8.364 - type: mrr_at_5 value: 8.956999999999999 - type: ndcg_at_1 value: 7.090000000000001 - type: ndcg_at_10 value: 9.411999999999999 - type: ndcg_at_100 value: 11.318999999999999 - type: ndcg_at_1000 value: 13.478000000000002 - type: ndcg_at_3 value: 7.837 - type: ndcg_at_5 value: 8.73 - type: precision_at_1 value: 7.090000000000001 - type: precision_at_10 value: 1.558 - type: precision_at_100 value: 0.28400000000000003 - type: precision_at_1000 value: 0.053 - type: precision_at_3 value: 3.42 - type: precision_at_5 value: 2.5749999999999997 - type: recall_at_1 value: 6.098 - type: recall_at_10 value: 12.764000000000001 - type: recall_at_100 value: 21.747 - type: recall_at_1000 value: 38.279999999999994 - type: recall_at_3 value: 8.476 - type: recall_at_5 value: 10.707 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 8.607 - type: map_at_10 value: 10.835 - type: map_at_100 value: 11.285 - type: map_at_1000 value: 11.383000000000001 - type: map_at_3 value: 10.111 - type: map_at_5 value: 10.334999999999999 - type: mrr_at_1 value: 10.671999999999999 - type: mrr_at_10 value: 13.269 - type: mrr_at_100 value: 13.729 - type: mrr_at_1000 value: 13.813 - type: mrr_at_3 value: 12.385 - type: mrr_at_5 value: 12.701 - type: ndcg_at_1 value: 10.671999999999999 - type: ndcg_at_10 value: 12.728 - type: ndcg_at_100 value: 15.312999999999999 - type: ndcg_at_1000 value: 18.160999999999998 - type: ndcg_at_3 value: 11.355 - type: ndcg_at_5 value: 11.605 - type: precision_at_1 value: 10.671999999999999 - type: precision_at_10 value: 2.154 - type: precision_at_100 value: 0.455 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 4.941 - type: precision_at_5 value: 3.2809999999999997 - type: recall_at_1 value: 8.607 - type: recall_at_10 value: 16.398 - type: recall_at_100 value: 28.92 - type: recall_at_1000 value: 49.761 - type: recall_at_3 value: 11.844000000000001 - type: recall_at_5 value: 12.792 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 3.826 - type: map_at_10 value: 5.6419999999999995 - type: map_at_100 value: 5.943 - type: map_at_1000 value: 6.005 - type: map_at_3 value: 5.1049999999999995 - type: map_at_5 value: 5.437 - type: mrr_at_1 value: 4.436 - type: mrr_at_10 value: 6.413 - type: mrr_at_100 value: 6.752 - type: mrr_at_1000 value: 6.819999999999999 - type: mrr_at_3 value: 5.884 - type: mrr_at_5 value: 6.18 - type: ndcg_at_1 value: 4.436 - type: ndcg_at_10 value: 6.7989999999999995 - type: ndcg_at_100 value: 8.619 - type: ndcg_at_1000 value: 10.842 - type: ndcg_at_3 value: 5.739 - type: ndcg_at_5 value: 6.292000000000001 - type: precision_at_1 value: 4.436 - type: precision_at_10 value: 1.109 - type: precision_at_100 value: 0.214 - type: precision_at_1000 value: 0.043 - type: precision_at_3 value: 2.588 - type: precision_at_5 value: 1.848 - type: recall_at_1 value: 3.826 - type: recall_at_10 value: 9.655 - type: recall_at_100 value: 18.611 - type: recall_at_1000 value: 36.733 - type: recall_at_3 value: 6.784 - type: recall_at_5 value: 8.17 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 2.09 - type: map_at_10 value: 3.469 - type: map_at_100 value: 3.93 - type: map_at_1000 value: 4.018 - type: map_at_3 value: 2.8209999999999997 - type: map_at_5 value: 3.144 - type: mrr_at_1 value: 4.756 - type: mrr_at_10 value: 7.853000000000001 - type: mrr_at_100 value: 8.547 - type: mrr_at_1000 value: 8.631 - type: mrr_at_3 value: 6.569 - type: mrr_at_5 value: 7.249999999999999 - type: ndcg_at_1 value: 4.756 - type: ndcg_at_10 value: 5.494000000000001 - type: ndcg_at_100 value: 8.275 - type: ndcg_at_1000 value: 10.892 - type: ndcg_at_3 value: 4.091 - type: ndcg_at_5 value: 4.588 - type: precision_at_1 value: 4.756 - type: precision_at_10 value: 1.8370000000000002 - type: precision_at_100 value: 0.475 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 3.018 - type: precision_at_5 value: 2.528 - type: recall_at_1 value: 2.09 - type: recall_at_10 value: 7.127 - type: recall_at_100 value: 17.483999999999998 - type: recall_at_1000 value: 33.353 - type: recall_at_3 value: 3.742 - type: recall_at_5 value: 5.041 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 0.573 - type: map_at_10 value: 1.282 - type: map_at_100 value: 1.625 - type: map_at_1000 value: 1.71 - type: map_at_3 value: 1.0 - type: map_at_5 value: 1.135 - type: mrr_at_1 value: 7.000000000000001 - type: mrr_at_10 value: 11.084 - type: mrr_at_100 value: 11.634 - type: mrr_at_1000 value: 11.715 - type: mrr_at_3 value: 9.792 - type: mrr_at_5 value: 10.404 - type: ndcg_at_1 value: 4.375 - type: ndcg_at_10 value: 3.7800000000000002 - type: ndcg_at_100 value: 4.353 - type: ndcg_at_1000 value: 6.087 - type: ndcg_at_3 value: 4.258 - type: ndcg_at_5 value: 3.988 - type: precision_at_1 value: 7.000000000000001 - type: precision_at_10 value: 3.35 - type: precision_at_100 value: 1.057 - type: precision_at_1000 value: 0.243 - type: precision_at_3 value: 5.75 - type: precision_at_5 value: 4.6 - type: recall_at_1 value: 0.573 - type: recall_at_10 value: 2.464 - type: recall_at_100 value: 5.6770000000000005 - type: recall_at_1000 value: 12.516 - type: recall_at_3 value: 1.405 - type: recall_at_5 value: 1.807 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 23.279999999999998 - type: f1 value: 19.87865985032945 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 3.145 - type: map_at_10 value: 4.721 - type: map_at_100 value: 5.086 - type: map_at_1000 value: 5.142 - type: map_at_3 value: 4.107 - type: map_at_5 value: 4.45 - type: mrr_at_1 value: 3.27 - type: mrr_at_10 value: 4.958 - type: mrr_at_100 value: 5.35 - type: mrr_at_1000 value: 5.409 - type: mrr_at_3 value: 4.303 - type: mrr_at_5 value: 4.6739999999999995 - type: ndcg_at_1 value: 3.27 - type: ndcg_at_10 value: 5.768 - type: ndcg_at_100 value: 7.854 - type: ndcg_at_1000 value: 9.729000000000001 - type: ndcg_at_3 value: 4.476 - type: ndcg_at_5 value: 5.102 - type: precision_at_1 value: 3.27 - type: precision_at_10 value: 0.942 - type: precision_at_100 value: 0.20600000000000002 - type: precision_at_1000 value: 0.038 - type: precision_at_3 value: 1.8849999999999998 - type: precision_at_5 value: 1.455 - type: recall_at_1 value: 3.145 - type: recall_at_10 value: 8.889 - type: recall_at_100 value: 19.092000000000002 - type: recall_at_1000 value: 34.35 - type: recall_at_3 value: 5.353 - type: recall_at_5 value: 6.836 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 1.166 - type: map_at_10 value: 2.283 - type: map_at_100 value: 2.564 - type: map_at_1000 value: 2.6519999999999997 - type: map_at_3 value: 1.867 - type: map_at_5 value: 2.0500000000000003 - type: mrr_at_1 value: 2.932 - type: mrr_at_10 value: 4.852 - type: mrr_at_100 value: 5.306 - type: mrr_at_1000 value: 5.4 - type: mrr_at_3 value: 4.141 - type: mrr_at_5 value: 4.457 - type: ndcg_at_1 value: 2.932 - type: ndcg_at_10 value: 3.5709999999999997 - type: ndcg_at_100 value: 5.489 - type: ndcg_at_1000 value: 8.309999999999999 - type: ndcg_at_3 value: 2.773 - type: ndcg_at_5 value: 2.979 - type: precision_at_1 value: 2.932 - type: precision_at_10 value: 1.049 - type: precision_at_100 value: 0.306 - type: precision_at_1000 value: 0.077 - type: precision_at_3 value: 1.8519999999999999 - type: precision_at_5 value: 1.389 - type: recall_at_1 value: 1.166 - type: recall_at_10 value: 5.178 - type: recall_at_100 value: 13.056999999999999 - type: recall_at_1000 value: 31.708 - type: recall_at_3 value: 2.714 - type: recall_at_5 value: 3.4909999999999997 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 6.138 - type: map_at_10 value: 8.212 - type: map_at_100 value: 8.548 - type: map_at_1000 value: 8.604000000000001 - type: map_at_3 value: 7.555000000000001 - type: map_at_5 value: 7.881 - type: mrr_at_1 value: 12.275 - type: mrr_at_10 value: 15.49 - type: mrr_at_100 value: 15.978 - type: mrr_at_1000 value: 16.043 - type: mrr_at_3 value: 14.488000000000001 - type: mrr_at_5 value: 14.975 - type: ndcg_at_1 value: 12.275 - type: ndcg_at_10 value: 11.078000000000001 - type: ndcg_at_100 value: 13.081999999999999 - type: ndcg_at_1000 value: 14.906 - type: ndcg_at_3 value: 9.574 - type: ndcg_at_5 value: 10.206999999999999 - type: precision_at_1 value: 12.275 - type: precision_at_10 value: 2.488 - type: precision_at_100 value: 0.41200000000000003 - type: precision_at_1000 value: 0.066 - type: precision_at_3 value: 5.991 - type: precision_at_5 value: 4.0969999999999995 - type: recall_at_1 value: 6.138 - type: recall_at_10 value: 12.438 - type: recall_at_100 value: 20.601 - type: recall_at_1000 value: 32.984 - type: recall_at_3 value: 8.987 - type: recall_at_5 value: 10.242999999999999 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 56.96359999999999 - type: ap value: 54.16760114570921 - type: f1 value: 56.193845361069116 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 1.34 - type: map_at_10 value: 2.2190000000000003 - type: map_at_100 value: 2.427 - type: map_at_1000 value: 2.461 - type: map_at_3 value: 1.8610000000000002 - type: map_at_5 value: 2.0340000000000003 - type: mrr_at_1 value: 1.375 - type: mrr_at_10 value: 2.284 - type: mrr_at_100 value: 2.5 - type: mrr_at_1000 value: 2.535 - type: mrr_at_3 value: 1.913 - type: mrr_at_5 value: 2.094 - type: ndcg_at_1 value: 1.375 - type: ndcg_at_10 value: 2.838 - type: ndcg_at_100 value: 4.043 - type: ndcg_at_1000 value: 5.205 - type: ndcg_at_3 value: 2.0629999999999997 - type: ndcg_at_5 value: 2.387 - type: precision_at_1 value: 1.375 - type: precision_at_10 value: 0.496 - type: precision_at_100 value: 0.11399999999999999 - type: precision_at_1000 value: 0.022000000000000002 - type: precision_at_3 value: 0.898 - type: precision_at_5 value: 0.705 - type: recall_at_1 value: 1.34 - type: recall_at_10 value: 4.787 - type: recall_at_100 value: 10.759 - type: recall_at_1000 value: 20.362 - type: recall_at_3 value: 2.603 - type: recall_at_5 value: 3.398 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 64.39808481532147 - type: f1 value: 63.468270818712625 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 53.961679346294744 - type: f1 value: 51.6707117653683 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 57.018012008005336 - type: f1 value: 54.23413458037234 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 48.84434700908236 - type: f1 value: 46.48494180527987 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 39.7669415561133 - type: f1 value: 35.50974325529877 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 42.589511754068724 - type: f1 value: 40.47244422785889 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 34.01276789785682 - type: f1 value: 21.256775922291286 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 33.285432516201745 - type: f1 value: 19.841703666811565 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 32.121414276184126 - type: f1 value: 19.34706868150749 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 26.088318196053866 - type: f1 value: 17.22608011891254 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 15.320903549659375 - type: f1 value: 9.62002916015258 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 16.426763110307412 - type: f1 value: 11.023799171137183 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 27.347007397444518 - type: f1 value: 25.503551916252842 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 10.655682582380631 - type: f1 value: 9.141696317946996 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 17.347007397444518 - type: f1 value: 15.345346511499534 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 20.39004707464694 - type: f1 value: 21.129515472610237 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 14.082044384667114 - type: f1 value: 12.169922201279885 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 27.108271687962336 - type: f1 value: 25.449222444030063 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 27.780766644250164 - type: f1 value: 26.96237025531764 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 21.768661735036986 - type: f1 value: 22.377462868662263 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 21.967047747141898 - type: f1 value: 22.427583602797057 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 33.221250840618694 - type: f1 value: 32.627621011904495 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 27.047747141896426 - type: f1 value: 25.244455827652786 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 18.850033624747812 - type: f1 value: 16.532690247057452 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.934767989240083 - type: f1 value: 24.126974912341858 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.59179556153329 - type: f1 value: 23.97686173045838 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 17.683254875588432 - type: f1 value: 15.217082232778534 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 14.277067921990588 - type: f1 value: 13.06156794974721 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.817081371889717 - type: f1 value: 24.79443526877249 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 12.326832548755885 - type: f1 value: 10.850963544530288 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 28.244788164088764 - type: f1 value: 27.442212153664336 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.0390047074647 - type: f1 value: 24.29180485465988 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.099529253530594 - type: f1 value: 26.47963496597501 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.383322125084057 - type: f1 value: 27.24527274982159 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.970410221923334 - type: f1 value: 24.710215925904627 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 14.159381304640215 - type: f1 value: 12.262797179154113 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 12.078009414929387 - type: f1 value: 10.85388698579932 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 10.144586415601884 - type: f1 value: 8.629316498328535 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 23.799596503026226 - type: f1 value: 21.4839774342838 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 27.047747141896433 - type: f1 value: 25.86288514660441 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 10.82380632145259 - type: f1 value: 9.568319030257811 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 14.435104236718225 - type: f1 value: 14.861584951252121 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.83254875588433 - type: f1 value: 26.084749439191967 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 13.792871553463351 - type: f1 value: 11.496310101617802 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.292535305985208 - type: f1 value: 24.098118477282508 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.24075319435104 - type: f1 value: 25.259998680849815 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 24.909213180901148 - type: f1 value: 23.684726718537476 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 27.310020174848688 - type: f1 value: 26.28728556240871 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 21.930060524546064 - type: f1 value: 21.993435727293242 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.773369199731 - type: f1 value: 23.857739120942632 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 29.256893073301953 - type: f1 value: 26.6824726822139 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 17.673167451244115 - type: f1 value: 18.74169530134767 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.190316072629454 - type: f1 value: 26.000111409348474 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 28.903833221250842 - type: f1 value: 27.166958835143152 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 13.517148621385342 - type: f1 value: 10.124568781522633 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 12.414256893073302 - type: f1 value: 10.72905194223371 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 17.330195023537325 - type: f1 value: 17.262535319973026 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 22.310020174848688 - type: f1 value: 22.770175966437712 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 23.066577000672496 - type: f1 value: 22.50576183714979 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 12.501681237390722 - type: f1 value: 11.803223778323549 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 22.76059179556153 - type: f1 value: 21.55631039694901 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 34.92602555480834 - type: f1 value: 33.727974171773425 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 28.365837256220576 - type: f1 value: 28.510022067424707 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 36.02891728312038 - type: f1 value: 31.370502912090657 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 19.330867518493612 - type: f1 value: 15.90055477686407 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 23.880295897780766 - type: f1 value: 21.695586897546278 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.853396099529256 - type: f1 value: 26.709933198206503 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 18.382649630127773 - type: f1 value: 16.772353498005437 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 35.40685944855414 - type: f1 value: 31.488014251203257 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 34.4754539340955 - type: f1 value: 31.226537880607296 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 30.0 - type: f1 value: 28.08153376359271 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 26.879623402824482 - type: f1 value: 24.773267596830472 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 43.77605917955615 - type: f1 value: 41.60519309254586 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.807666442501684 - type: f1 value: 30.250350082554473 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 24.515803631472764 - type: f1 value: 21.726717236406927 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 33.315400134498994 - type: f1 value: 29.353644700383935 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.42434431741762 - type: f1 value: 29.87668403274445 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 24.40147948890384 - type: f1 value: 21.429656257015555 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 21.435776731674512 - type: f1 value: 18.344740043506686 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 31.533288500336248 - type: f1 value: 29.185785763469298 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 19.983187626092803 - type: f1 value: 17.088318438817677 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.73369199731002 - type: f1 value: 31.37876294000571 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 31.503026227303295 - type: f1 value: 28.944584739759726 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 31.116341627437794 - type: f1 value: 29.410419968584232 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 31.136516476126424 - type: f1 value: 29.6719090248999 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 34.3813046402152 - type: f1 value: 31.481374035431443 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 18.3591123066577 - type: f1 value: 16.158113168004945 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 19.250168123739073 - type: f1 value: 16.728590019294526 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 16.04236718224613 - type: f1 value: 14.304518042661318 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.95427034297243 - type: f1 value: 26.14194694048272 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.286482851378615 - type: f1 value: 29.426003364232837 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 18.762609280430397 - type: f1 value: 15.764539982254005 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 21.570275722932077 - type: f1 value: 18.98517402487539 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 35.95158036314728 - type: f1 value: 33.45853327725729 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 20.03026227303295 - type: f1 value: 16.864192363299615 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.89172831203766 - type: f1 value: 29.90554132334421 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 32.36381977135171 - type: f1 value: 29.57501043505274 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 31.856086079354405 - type: f1 value: 30.242758819443548 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 31.694687289845326 - type: f1 value: 29.495870419371684 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 27.01412239408204 - type: f1 value: 26.44782204477556 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 30.554808338937463 - type: f1 value: 27.93696283146029 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 35.813718897108274 - type: f1 value: 33.021495683147286 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 22.992602555480836 - type: f1 value: 21.524928515996447 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 34.7074646940148 - type: f1 value: 31.54759971873104 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 36.240753194351036 - type: f1 value: 33.34397881816082 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 19.741089441829185 - type: f1 value: 16.129268723975766 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 17.54203093476799 - type: f1 value: 15.537381383894061 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 22.817753866846 - type: f1 value: 20.72245485990428 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.58439811701412 - type: f1 value: 26.88190194852028 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.60457296570275 - type: f1 value: 26.98989368733863 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 23.345662407531943 - type: f1 value: 19.75032390408514 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 29.71082716879624 - type: f1 value: 26.675920460240782 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.09549428379288 - type: f1 value: 41.275350430825675 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 37.24277067921991 - type: f1 value: 35.65629114113254 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 22.08508717069763 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 16.58582885790446 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 26.730268595233923 - type: mrr value: 27.065185919114704 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 1.2 - type: map_at_10 value: 1.6400000000000001 - type: map_at_100 value: 1.9789999999999999 - type: map_at_1000 value: 2.554 - type: map_at_3 value: 1.4449999999999998 - type: map_at_5 value: 1.533 - type: mrr_at_1 value: 6.811 - type: mrr_at_10 value: 11.068999999999999 - type: mrr_at_100 value: 12.454 - type: mrr_at_1000 value: 12.590000000000002 - type: mrr_at_3 value: 9.751999999999999 - type: mrr_at_5 value: 10.31 - type: ndcg_at_1 value: 6.3469999999999995 - type: ndcg_at_10 value: 4.941 - type: ndcg_at_100 value: 6.524000000000001 - type: ndcg_at_1000 value: 15.918 - type: ndcg_at_3 value: 5.959 - type: ndcg_at_5 value: 5.395 - type: precision_at_1 value: 6.811 - type: precision_at_10 value: 3.375 - type: precision_at_100 value: 2.0709999999999997 - type: precision_at_1000 value: 1.313 - type: precision_at_3 value: 5.47 - type: precision_at_5 value: 4.396 - type: recall_at_1 value: 1.2 - type: recall_at_10 value: 2.5909999999999997 - type: recall_at_100 value: 9.443999999999999 - type: recall_at_1000 value: 41.542 - type: recall_at_3 value: 1.702 - type: recall_at_5 value: 1.9879999999999998 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 1.214 - type: map_at_10 value: 2.067 - type: map_at_100 value: 2.2399999999999998 - type: map_at_1000 value: 2.2689999999999997 - type: map_at_3 value: 1.691 - type: map_at_5 value: 1.916 - type: mrr_at_1 value: 1.506 - type: mrr_at_10 value: 2.413 - type: mrr_at_100 value: 2.587 - type: mrr_at_1000 value: 2.616 - type: mrr_at_3 value: 2.023 - type: mrr_at_5 value: 2.246 - type: ndcg_at_1 value: 1.506 - type: ndcg_at_10 value: 2.703 - type: ndcg_at_100 value: 3.66 - type: ndcg_at_1000 value: 4.6 - type: ndcg_at_3 value: 1.9300000000000002 - type: ndcg_at_5 value: 2.33 - type: precision_at_1 value: 1.506 - type: precision_at_10 value: 0.539 - type: precision_at_100 value: 0.11 - type: precision_at_1000 value: 0.02 - type: precision_at_3 value: 0.9369999999999999 - type: precision_at_5 value: 0.7939999999999999 - type: recall_at_1 value: 1.214 - type: recall_at_10 value: 4.34 - type: recall_at_100 value: 8.905000000000001 - type: recall_at_1000 value: 16.416 - type: recall_at_3 value: 2.3009999999999997 - type: recall_at_5 value: 3.2489999999999997 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 45.708 - type: map_at_10 value: 55.131 - type: map_at_100 value: 55.935 - type: map_at_1000 value: 55.993 - type: map_at_3 value: 52.749 - type: map_at_5 value: 54.166000000000004 - type: mrr_at_1 value: 52.44 - type: mrr_at_10 value: 59.99 - type: mrr_at_100 value: 60.492999999999995 - type: mrr_at_1000 value: 60.522 - type: mrr_at_3 value: 58.285 - type: mrr_at_5 value: 59.305 - type: ndcg_at_1 value: 52.43 - type: ndcg_at_10 value: 59.873 - type: ndcg_at_100 value: 63.086 - type: ndcg_at_1000 value: 64.291 - type: ndcg_at_3 value: 56.291000000000004 - type: ndcg_at_5 value: 58.071 - type: precision_at_1 value: 52.43 - type: precision_at_10 value: 8.973 - type: precision_at_100 value: 1.161 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 24.177 - type: precision_at_5 value: 16.073999999999998 - type: recall_at_1 value: 45.708 - type: recall_at_10 value: 69.195 - type: recall_at_100 value: 82.812 - type: recall_at_1000 value: 91.136 - type: recall_at_3 value: 58.938 - type: recall_at_5 value: 63.787000000000006 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 13.142048230676806 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 26.06687178917052 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 0.46499999999999997 - type: map_at_10 value: 0.906 - type: map_at_100 value: 1.127 - type: map_at_1000 value: 1.203 - type: map_at_3 value: 0.72 - type: map_at_5 value: 0.814 - type: mrr_at_1 value: 2.3 - type: mrr_at_10 value: 3.733 - type: mrr_at_100 value: 4.295999999999999 - type: mrr_at_1000 value: 4.412 - type: mrr_at_3 value: 3.183 - type: mrr_at_5 value: 3.458 - type: ndcg_at_1 value: 2.3 - type: ndcg_at_10 value: 1.797 - type: ndcg_at_100 value: 3.376 - type: ndcg_at_1000 value: 6.143 - type: ndcg_at_3 value: 1.763 - type: ndcg_at_5 value: 1.5070000000000001 - type: precision_at_1 value: 2.3 - type: precision_at_10 value: 0.91 - type: precision_at_100 value: 0.32399999999999995 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 1.633 - type: precision_at_5 value: 1.3 - type: recall_at_1 value: 0.46499999999999997 - type: recall_at_10 value: 1.8499999999999999 - type: recall_at_100 value: 6.625 - type: recall_at_1000 value: 20.587 - type: recall_at_3 value: 0.9900000000000001 - type: recall_at_5 value: 1.315 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 60.78961481918511 - type: cos_sim_spearman value: 54.92014630234372 - type: euclidean_pearson value: 54.91456364340953 - type: euclidean_spearman value: 50.95537043206628 - type: manhattan_pearson value: 55.0450005071106 - type: manhattan_spearman value: 51.227579527791654 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 43.73124494569395 - type: cos_sim_spearman value: 43.07629933550637 - type: euclidean_pearson value: 37.2529484210563 - type: euclidean_spearman value: 36.68421330216546 - type: manhattan_pearson value: 37.41673219009712 - type: manhattan_spearman value: 36.92073705702668 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 57.17534157059787 - type: cos_sim_spearman value: 56.86679858348438 - type: euclidean_pearson value: 54.51552371857776 - type: euclidean_spearman value: 53.80989851917749 - type: manhattan_pearson value: 54.44486043632584 - type: manhattan_spearman value: 53.83487353949481 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 52.319034960820375 - type: cos_sim_spearman value: 50.89512224974754 - type: euclidean_pearson value: 49.19308209408045 - type: euclidean_spearman value: 47.45736923614355 - type: manhattan_pearson value: 48.82127080055118 - type: manhattan_spearman value: 47.20185686489298 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 61.57602956458427 - type: cos_sim_spearman value: 62.894640061838956 - type: euclidean_pearson value: 53.86893407586029 - type: euclidean_spearman value: 54.68528520514299 - type: manhattan_pearson value: 53.689614981956815 - type: manhattan_spearman value: 54.51172839699876 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 56.2305694109318 - type: cos_sim_spearman value: 57.885939000786045 - type: euclidean_pearson value: 50.486043353701994 - type: euclidean_spearman value: 50.4463227974027 - type: manhattan_pearson value: 50.73317560427465 - type: manhattan_spearman value: 50.81397877006027 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 55.52162058025664 - type: cos_sim_spearman value: 59.02220327783535 - type: euclidean_pearson value: 55.66332330866701 - type: euclidean_spearman value: 56.829076266662206 - type: manhattan_pearson value: 55.39181385186973 - type: manhattan_spearman value: 56.607432176121144 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 46.312186899914906 - type: cos_sim_spearman value: 48.07172073934163 - type: euclidean_pearson value: 46.957276350776695 - type: euclidean_spearman value: 43.98800593212707 - type: manhattan_pearson value: 46.910805787619914 - type: manhattan_spearman value: 43.96662723946553 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 16.222172523403835 - type: cos_sim_spearman value: 17.230258645779042 - type: euclidean_pearson value: -6.781460243147299 - type: euclidean_spearman value: -6.884123336780775 - type: manhattan_pearson value: -4.369061881907372 - type: manhattan_spearman value: -4.235845433380353 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 7.462476431657987 - type: cos_sim_spearman value: 5.875270645234161 - type: euclidean_pearson value: -10.79494346180473 - type: euclidean_spearman value: -11.704529023304776 - type: manhattan_pearson value: -11.465867974964997 - type: manhattan_spearman value: -12.428424608287173 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 61.46601840758559 - type: cos_sim_spearman value: 65.69667638887147 - type: euclidean_pearson value: 49.531065525619866 - type: euclidean_spearman value: 53.880480167479725 - type: manhattan_pearson value: 50.25462221374689 - type: manhattan_spearman value: 54.22205494276401 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: -12.769479370624031 - type: cos_sim_spearman value: -12.161427312728382 - type: euclidean_pearson value: -27.950593491756536 - type: euclidean_spearman value: -24.925281959398585 - type: manhattan_pearson value: -25.98778888167475 - type: manhattan_spearman value: -22.861942388867234 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 2.1575763564561727 - type: cos_sim_spearman value: 1.182204089411577 - type: euclidean_pearson value: -10.389249806317189 - type: euclidean_spearman value: -16.078659904264605 - type: manhattan_pearson value: -9.674301846448607 - type: manhattan_spearman value: -16.976576817518577 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 66.16718583059163 - type: cos_sim_spearman value: 69.95156267898052 - type: euclidean_pearson value: 64.93174777029739 - type: euclidean_spearman value: 66.21292533974568 - type: manhattan_pearson value: 65.2578109632889 - type: manhattan_spearman value: 66.21830865759128 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 0.1540829683540524 - type: cos_sim_spearman value: -2.4072834011003987 - type: euclidean_pearson value: -18.951775877513473 - type: euclidean_spearman value: -18.393605606817527 - type: manhattan_pearson value: -19.609633839454542 - type: manhattan_spearman value: -19.276064769117912 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: -4.22497246932717 - type: cos_sim_spearman value: -5.747420352346977 - type: euclidean_pearson value: -16.86351349130112 - type: euclidean_spearman value: -16.555536618547382 - type: manhattan_pearson value: -17.45445643482646 - type: manhattan_spearman value: -17.97322953856309 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 8.559184021676034 - type: cos_sim_spearman value: 5.600273352595882 - type: euclidean_pearson value: -10.76482859283058 - type: euclidean_spearman value: -9.575202768285926 - type: manhattan_pearson value: -9.48508597350615 - type: manhattan_spearman value: -9.33387861352172 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 30.260087169228978 - type: cos_sim_spearman value: 43.264174903196015 - type: euclidean_pearson value: 35.07785877281954 - type: euclidean_spearman value: 43.41294719372452 - type: manhattan_pearson value: 36.74996284702431 - type: manhattan_spearman value: 43.53522851890142 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 5.58694979115026 - type: cos_sim_spearman value: 32.80692337371332 - type: euclidean_pearson value: 10.53180875461474 - type: euclidean_spearman value: 31.105269938654033 - type: manhattan_pearson value: 10.559778015974826 - type: manhattan_spearman value: 31.452204563072044 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 10.593783873928478 - type: cos_sim_spearman value: 50.397542574042006 - type: euclidean_pearson value: 28.122179063209714 - type: euclidean_spearman value: 50.72847867996529 - type: manhattan_pearson value: 28.730690148465005 - type: manhattan_spearman value: 51.019761292483366 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: -1.3049499265017876 - type: cos_sim_spearman value: 16.347130048706084 - type: euclidean_pearson value: 0.5710147274110128 - type: euclidean_spearman value: 16.589843077857605 - type: manhattan_pearson value: 1.1226404198336415 - type: manhattan_spearman value: 16.410620108636557 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: -10.96861909019159 - type: cos_sim_spearman value: 24.536979219880724 - type: euclidean_pearson value: -1.3040190807315306 - type: euclidean_spearman value: 25.061584673761928 - type: manhattan_pearson value: -0.06525719745037804 - type: manhattan_spearman value: 25.979295538386893 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 1.0599417065503314 - type: cos_sim_spearman value: 52.055853787103345 - type: euclidean_pearson value: 23.666828441081776 - type: euclidean_spearman value: 52.38656753170069 - type: manhattan_pearson value: 23.398080463967215 - type: manhattan_spearman value: 52.23849717509109 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: -2.847646040977239 - type: cos_sim_spearman value: 40.5826838357407 - type: euclidean_pearson value: 9.242304983683113 - type: euclidean_spearman value: 40.35906851022345 - type: manhattan_pearson value: 9.645663412799504 - type: manhattan_spearman value: 40.78106154950966 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 17.761397832130992 - type: cos_sim_spearman value: 59.98756452345925 - type: euclidean_pearson value: 37.03125109036693 - type: euclidean_spearman value: 59.58469212715707 - type: manhattan_pearson value: 36.828102137170724 - type: manhattan_spearman value: 59.07036501478588 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 22.281212883400205 - type: cos_sim_spearman value: 48.27687537627578 - type: euclidean_pearson value: 30.531395629285324 - type: euclidean_spearman value: 50.349143748970384 - type: manhattan_pearson value: 30.48762081986554 - type: manhattan_spearman value: 50.66037165529169 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 15.76679673990358 - type: cos_sim_spearman value: 19.123349126370442 - type: euclidean_pearson value: 19.21389203087116 - type: euclidean_spearman value: 23.63276413160338 - type: manhattan_pearson value: 18.789263824907053 - type: manhattan_spearman value: 19.962703178974692 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 11.024970397289941 - type: cos_sim_spearman value: 13.530951900755017 - type: euclidean_pearson value: 13.473514585343645 - type: euclidean_spearman value: 16.754702023734914 - type: manhattan_pearson value: 13.72847275970385 - type: manhattan_spearman value: 16.673001637012348 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 33.32761589409043 - type: cos_sim_spearman value: 54.14305778960692 - type: euclidean_pearson value: 45.30173241170555 - type: euclidean_spearman value: 54.77422257007743 - type: manhattan_pearson value: 45.41890064000217 - type: manhattan_spearman value: 54.533788920795544 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 20.045210048995486 - type: cos_sim_spearman value: 17.597101329633823 - type: euclidean_pearson value: 32.531726142346145 - type: euclidean_spearman value: 27.244772040848105 - type: manhattan_pearson value: 32.74618458514601 - type: manhattan_spearman value: 25.81220754539242 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: -13.832846350193021 - type: cos_sim_spearman value: -8.406778050457863 - type: euclidean_pearson value: -6.557254855697437 - type: euclidean_spearman value: -3.5112770921588563 - type: manhattan_pearson value: -6.493730738275641 - type: manhattan_spearman value: -2.5922348401468365 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 26.357929743436664 - type: cos_sim_spearman value: 37.3417709718339 - type: euclidean_pearson value: 30.930792572341293 - type: euclidean_spearman value: 36.061866364725795 - type: manhattan_pearson value: 31.56982745863155 - type: manhattan_spearman value: 37.18529502311113 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 9.310102041071547 - type: cos_sim_spearman value: 10.907002693108673 - type: euclidean_pearson value: 7.361793742296021 - type: euclidean_spearman value: 9.53967881391466 - type: manhattan_pearson value: 8.017048631719996 - type: manhattan_spearman value: 13.537860190039725 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: -5.534456407419709 - type: cos_sim_spearman value: 17.552638994787724 - type: euclidean_pearson value: -10.136558594355556 - type: euclidean_spearman value: 11.055083156366303 - type: manhattan_pearson value: -11.799223055640773 - type: manhattan_spearman value: 1.416528760982869 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 48.64639760720344 - type: cos_sim_spearman value: 39.440531887330785 - type: euclidean_pearson value: 37.75527464173489 - type: euclidean_spearman value: 39.440531887330785 - type: manhattan_pearson value: 32.324715276369474 - type: manhattan_spearman value: 28.17180849095055 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 44.667456983937 - type: cos_sim_spearman value: 46.04327333618551 - type: euclidean_pearson value: 44.583522824155104 - type: euclidean_spearman value: 44.77184813864239 - type: manhattan_pearson value: 44.54496373721756 - type: manhattan_spearman value: 44.830873857115996 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 49.756063724243 - type: mrr value: 75.29077585450135 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 14.194 - type: map_at_10 value: 18.756999999999998 - type: map_at_100 value: 19.743 - type: map_at_1000 value: 19.865 - type: map_at_3 value: 16.986 - type: map_at_5 value: 18.024 - type: mrr_at_1 value: 15.0 - type: mrr_at_10 value: 19.961000000000002 - type: mrr_at_100 value: 20.875 - type: mrr_at_1000 value: 20.982 - type: mrr_at_3 value: 18.056 - type: mrr_at_5 value: 19.406000000000002 - type: ndcg_at_1 value: 15.0 - type: ndcg_at_10 value: 21.775 - type: ndcg_at_100 value: 26.8 - type: ndcg_at_1000 value: 30.468 - type: ndcg_at_3 value: 18.199 - type: ndcg_at_5 value: 20.111 - type: precision_at_1 value: 15.0 - type: precision_at_10 value: 3.4000000000000004 - type: precision_at_100 value: 0.607 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 7.444000000000001 - type: precision_at_5 value: 5.6000000000000005 - type: recall_at_1 value: 14.194 - type: recall_at_10 value: 30.0 - type: recall_at_100 value: 53.911 - type: recall_at_1000 value: 83.289 - type: recall_at_3 value: 20.556 - type: recall_at_5 value: 24.972 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.35544554455446 - type: cos_sim_ap value: 62.596006705300724 - type: cos_sim_f1 value: 60.80283353010627 - type: cos_sim_precision value: 74.20749279538906 - type: cos_sim_recall value: 51.5 - type: dot_accuracy value: 99.13564356435643 - type: dot_ap value: 43.87589686325114 - type: dot_f1 value: 46.99663623258049 - type: dot_precision value: 45.235892691951896 - type: dot_recall value: 48.9 - type: euclidean_accuracy value: 99.2 - type: euclidean_ap value: 43.44660755386079 - type: euclidean_f1 value: 45.9016393442623 - type: euclidean_precision value: 52.79583875162549 - type: euclidean_recall value: 40.6 - type: manhattan_accuracy value: 99.2 - type: manhattan_ap value: 43.11790011749347 - type: manhattan_f1 value: 45.11023176936122 - type: manhattan_precision value: 51.88556566970091 - type: manhattan_recall value: 39.900000000000006 - type: max_accuracy value: 99.35544554455446 - type: max_ap value: 62.596006705300724 - type: max_f1 value: 60.80283353010627 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 25.71674282500873 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 25.465780711520985 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 35.35656209427094 - type: mrr value: 35.10693860877685 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.074 - type: map_at_10 value: 0.47400000000000003 - type: map_at_100 value: 1.825 - type: map_at_1000 value: 4.056 - type: map_at_3 value: 0.199 - type: map_at_5 value: 0.301 - type: mrr_at_1 value: 34.0 - type: mrr_at_10 value: 46.06 - type: mrr_at_100 value: 47.506 - type: mrr_at_1000 value: 47.522999999999996 - type: mrr_at_3 value: 44.0 - type: mrr_at_5 value: 44.4 - type: ndcg_at_1 value: 32.0 - type: ndcg_at_10 value: 28.633999999999997 - type: ndcg_at_100 value: 18.547 - type: ndcg_at_1000 value: 16.142 - type: ndcg_at_3 value: 32.48 - type: ndcg_at_5 value: 31.163999999999998 - type: precision_at_1 value: 34.0 - type: precision_at_10 value: 30.4 - type: precision_at_100 value: 18.54 - type: precision_at_1000 value: 7.942 - type: precision_at_3 value: 35.333 - type: precision_at_5 value: 34.0 - type: recall_at_1 value: 0.074 - type: recall_at_10 value: 0.641 - type: recall_at_100 value: 3.675 - type: recall_at_1000 value: 15.706000000000001 - type: recall_at_3 value: 0.231 - type: recall_at_5 value: 0.367 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 0.6799999999999999 - type: map_at_10 value: 2.1420000000000003 - type: map_at_100 value: 2.888 - type: map_at_1000 value: 3.3779999999999997 - type: map_at_3 value: 1.486 - type: map_at_5 value: 1.7579999999999998 - type: mrr_at_1 value: 12.245000000000001 - type: mrr_at_10 value: 22.12 - type: mrr_at_100 value: 23.407 - type: mrr_at_1000 value: 23.483999999999998 - type: mrr_at_3 value: 19.048000000000002 - type: mrr_at_5 value: 20.986 - type: ndcg_at_1 value: 10.204 - type: ndcg_at_10 value: 7.374 - type: ndcg_at_100 value: 10.524000000000001 - type: ndcg_at_1000 value: 18.4 - type: ndcg_at_3 value: 9.913 - type: ndcg_at_5 value: 8.938 - type: precision_at_1 value: 12.245000000000001 - type: precision_at_10 value: 7.142999999999999 - type: precision_at_100 value: 2.4490000000000003 - type: precision_at_1000 value: 0.731 - type: precision_at_3 value: 11.565 - type: precision_at_5 value: 9.796000000000001 - type: recall_at_1 value: 0.6799999999999999 - type: recall_at_10 value: 4.038 - type: recall_at_100 value: 14.151 - type: recall_at_1000 value: 40.111999999999995 - type: recall_at_3 value: 1.921 - type: recall_at_5 value: 2.604 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 54.625600000000006 - type: ap value: 9.425323874806459 - type: f1 value: 42.38724794017267 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 42.8494623655914 - type: f1 value: 42.66062148844617 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 12.464890895237952 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 79.97854205161829 - type: cos_sim_ap value: 47.45175747605773 - type: cos_sim_f1 value: 46.55775962660444 - type: cos_sim_precision value: 41.73640167364017 - type: cos_sim_recall value: 52.638522427440634 - type: dot_accuracy value: 77.76718126005842 - type: dot_ap value: 35.97737653101504 - type: dot_f1 value: 41.1975475754439 - type: dot_precision value: 29.50165355228646 - type: dot_recall value: 68.25857519788919 - type: euclidean_accuracy value: 79.34076414138403 - type: euclidean_ap value: 45.309577778755134 - type: euclidean_f1 value: 45.09938313913639 - type: euclidean_precision value: 39.76631748589847 - type: euclidean_recall value: 52.0844327176781 - type: manhattan_accuracy value: 79.31692197651546 - type: manhattan_ap value: 45.2433373222626 - type: manhattan_f1 value: 45.04624986069319 - type: manhattan_precision value: 38.99286127725256 - type: manhattan_recall value: 53.324538258575195 - type: max_accuracy value: 79.97854205161829 - type: max_ap value: 47.45175747605773 - type: max_f1 value: 46.55775962660444 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 81.76737687740133 - type: cos_sim_ap value: 64.59241956109807 - type: cos_sim_f1 value: 57.83203629255339 - type: cos_sim_precision value: 55.50442477876106 - type: cos_sim_recall value: 60.363412380659064 - type: dot_accuracy value: 78.96922420149805 - type: dot_ap value: 56.11775087282065 - type: dot_f1 value: 52.92134831460675 - type: dot_precision value: 51.524212368728115 - type: dot_recall value: 54.39636587619341 - type: euclidean_accuracy value: 80.8611790274382 - type: euclidean_ap value: 61.28070098354092 - type: euclidean_f1 value: 54.58334971882497 - type: euclidean_precision value: 55.783297162607504 - type: euclidean_recall value: 53.43393902063443 - type: manhattan_accuracy value: 80.72534637326814 - type: manhattan_ap value: 61.18048430787254 - type: manhattan_f1 value: 54.50978912822061 - type: manhattan_precision value: 53.435396790178245 - type: manhattan_recall value: 55.6282722513089 - type: max_accuracy value: 81.76737687740133 - type: max_ap value: 64.59241956109807 - type: max_f1 value: 57.83203629255339