jssky commited on
Commit
3d5125d
·
verified ·
1 Parent(s): 392578e

Training in progress, step 375, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: oopsung/llama2-7b-n-ox-test-v1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "oopsung/llama2-7b-n-ox-test-v1",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "down_proj",
27
+ "q_proj",
28
+ "o_proj",
29
+ "up_proj",
30
+ "v_proj",
31
+ "gate_proj",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c956116bef461344bf4a4b2d7e434a6a68e0a7f2d6df224bd88881fae33226
3
+ size 80013120
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c6511404d3b19ac6763f02eceb5fa37fd685183f88a361be2aa29a519c6d5da
3
+ size 41120084
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41777d23a655188a0850025ea8ae3baa4aaf3314ad969b5ada6d5296b735f734
3
+ size 14244
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bf304e342001350c82d6970cec50fb92a4329a84dcb76ae8031bca03ca92aa9
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
last-checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "46331": {
31
+ "content": "<|sep|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "46332": {
39
+ "content": "<|endoftext|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "46333": {
47
+ "content": "<|acc|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "46334": {
55
+ "content": "<|rrn|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "46335": {
63
+ "content": "<|tel|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ }
70
+ },
71
+ "bos_token": "<s>",
72
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
73
+ "clean_up_tokenization_spaces": false,
74
+ "eos_token": "</s>",
75
+ "legacy": false,
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "sp_model_kwargs": {},
79
+ "tokenizer_class": "LlamaTokenizer",
80
+ "unk_token": "<unk>",
81
+ "use_default_system_prompt": false
82
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,2666 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.11090163025396474,
5
+ "eval_steps": 375,
6
+ "global_step": 375,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0002957376806772393,
13
+ "grad_norm": 5.918768405914307,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.3931,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0005914753613544786,
20
+ "grad_norm": 6.164484024047852,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.5398,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0008872130420317178,
27
+ "grad_norm": 5.500333309173584,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.4837,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0011829507227089572,
34
+ "grad_norm": 6.977994441986084,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.5093,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.0014786884033861965,
41
+ "grad_norm": 10.189373016357422,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.3296,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0017744260840634356,
48
+ "grad_norm": 8.993965148925781,
49
+ "learning_rate": 0.00012,
50
+ "loss": 0.9724,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.002070163764740675,
55
+ "grad_norm": 2.4879002571105957,
56
+ "learning_rate": 0.00014,
57
+ "loss": 0.6618,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0023659014454179145,
62
+ "grad_norm": 3.1456634998321533,
63
+ "learning_rate": 0.00016,
64
+ "loss": 0.5917,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0026616391260951538,
69
+ "grad_norm": 2.20988392829895,
70
+ "learning_rate": 0.00018,
71
+ "loss": 0.5093,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.002957376806772393,
76
+ "grad_norm": 1.189419150352478,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.5016,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.003253114487449632,
83
+ "grad_norm": 0.7363479733467102,
84
+ "learning_rate": 0.00019999977772170748,
85
+ "loss": 0.4919,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0035488521681268713,
90
+ "grad_norm": 0.8657339215278625,
91
+ "learning_rate": 0.00019999911088781805,
92
+ "loss": 0.5377,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0038445898488041106,
97
+ "grad_norm": 0.5705428123474121,
98
+ "learning_rate": 0.0001999979995012962,
99
+ "loss": 0.5056,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.00414032752948135,
104
+ "grad_norm": 0.6129299402236938,
105
+ "learning_rate": 0.00019999644356708261,
106
+ "loss": 0.4554,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.00443606521015859,
111
+ "grad_norm": 0.4173682928085327,
112
+ "learning_rate": 0.00019999444309209432,
113
+ "loss": 0.3437,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.004731802890835829,
118
+ "grad_norm": 0.39718082547187805,
119
+ "learning_rate": 0.0001999919980852246,
120
+ "loss": 0.5607,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.005027540571513068,
125
+ "grad_norm": 0.2396816462278366,
126
+ "learning_rate": 0.00019998910855734288,
127
+ "loss": 0.4337,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0053232782521903076,
132
+ "grad_norm": 0.36948394775390625,
133
+ "learning_rate": 0.0001999857745212947,
134
+ "loss": 0.4386,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.005619015932867547,
139
+ "grad_norm": 0.4336908161640167,
140
+ "learning_rate": 0.00019998199599190178,
141
+ "loss": 0.4447,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.005914753613544786,
146
+ "grad_norm": 0.3717949390411377,
147
+ "learning_rate": 0.0001999777729859618,
148
+ "loss": 0.3468,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0062104912942220255,
153
+ "grad_norm": 0.2210528403520584,
154
+ "learning_rate": 0.00019997310552224846,
155
+ "loss": 0.3254,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.006506228974899264,
160
+ "grad_norm": 0.373976469039917,
161
+ "learning_rate": 0.00019996799362151122,
162
+ "loss": 0.3819,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.006801966655576503,
167
+ "grad_norm": 0.4056873917579651,
168
+ "learning_rate": 0.00019996243730647538,
169
+ "loss": 0.395,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.0070977043362537426,
174
+ "grad_norm": 0.2301822304725647,
175
+ "learning_rate": 0.00019995643660184191,
176
+ "loss": 0.4185,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.007393442016930982,
181
+ "grad_norm": 0.22644546627998352,
182
+ "learning_rate": 0.00019994999153428737,
183
+ "loss": 0.3096,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.007689179697608221,
188
+ "grad_norm": 0.3260557949542999,
189
+ "learning_rate": 0.00019994310213246368,
190
+ "loss": 0.3562,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.007984917378285461,
195
+ "grad_norm": 0.2493218034505844,
196
+ "learning_rate": 0.00019993576842699816,
197
+ "loss": 0.4506,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0082806550589627,
202
+ "grad_norm": 0.21800749003887177,
203
+ "learning_rate": 0.0001999279904504933,
204
+ "loss": 0.3406,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.00857639273963994,
209
+ "grad_norm": 0.2646995186805725,
210
+ "learning_rate": 0.00019991976823752653,
211
+ "loss": 0.3676,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.00887213042031718,
216
+ "grad_norm": 0.2616923749446869,
217
+ "learning_rate": 0.00019991110182465032,
218
+ "loss": 0.3685,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.009167868100994419,
223
+ "grad_norm": 0.2577691078186035,
224
+ "learning_rate": 0.00019990199125039174,
225
+ "loss": 0.3006,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.009463605781671658,
230
+ "grad_norm": 0.26562878489494324,
231
+ "learning_rate": 0.00019989243655525247,
232
+ "loss": 0.3532,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.009759343462348897,
237
+ "grad_norm": 0.26207393407821655,
238
+ "learning_rate": 0.00019988243778170853,
239
+ "loss": 0.3386,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.010055081143026137,
244
+ "grad_norm": 0.2501125931739807,
245
+ "learning_rate": 0.0001998719949742101,
246
+ "loss": 0.2988,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.010350818823703376,
251
+ "grad_norm": 0.3094285726547241,
252
+ "learning_rate": 0.0001998611081791814,
253
+ "loss": 0.3979,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.010646556504380615,
258
+ "grad_norm": 0.2816741466522217,
259
+ "learning_rate": 0.00019984977744502038,
260
+ "loss": 0.3338,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.010942294185057854,
265
+ "grad_norm": 0.33405667543411255,
266
+ "learning_rate": 0.00019983800282209857,
267
+ "loss": 0.4424,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.011238031865735094,
272
+ "grad_norm": 0.26445043087005615,
273
+ "learning_rate": 0.00019982578436276082,
274
+ "loss": 0.3255,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.011533769546412333,
279
+ "grad_norm": 0.2719035744667053,
280
+ "learning_rate": 0.00019981312212132512,
281
+ "loss": 0.3665,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.011829507227089572,
286
+ "grad_norm": 0.41192904114723206,
287
+ "learning_rate": 0.00019980001615408228,
288
+ "loss": 0.3978,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.012125244907766812,
293
+ "grad_norm": 0.30053630471229553,
294
+ "learning_rate": 0.00019978646651929572,
295
+ "loss": 0.3416,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.012420982588444051,
300
+ "grad_norm": 0.32080647349357605,
301
+ "learning_rate": 0.00019977247327720128,
302
+ "loss": 0.3517,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.012716720269121289,
307
+ "grad_norm": 0.3234342038631439,
308
+ "learning_rate": 0.0001997580364900068,
309
+ "loss": 0.2878,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.013012457949798528,
314
+ "grad_norm": 0.33844128251075745,
315
+ "learning_rate": 0.000199743156221892,
316
+ "loss": 0.2822,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.013308195630475767,
321
+ "grad_norm": 0.36423033475875854,
322
+ "learning_rate": 0.00019972783253900808,
323
+ "loss": 0.3715,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.013603933311153006,
328
+ "grad_norm": 0.34381452202796936,
329
+ "learning_rate": 0.00019971206550947748,
330
+ "loss": 0.3983,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.013899670991830246,
335
+ "grad_norm": 0.3789922595024109,
336
+ "learning_rate": 0.00019969585520339354,
337
+ "loss": 0.2693,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.014195408672507485,
342
+ "grad_norm": 0.4301562011241913,
343
+ "learning_rate": 0.0001996792016928203,
344
+ "loss": 0.3752,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.014491146353184724,
349
+ "grad_norm": 0.4085782766342163,
350
+ "learning_rate": 0.00019966210505179197,
351
+ "loss": 0.3779,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.014786884033861964,
356
+ "grad_norm": 0.7027013897895813,
357
+ "learning_rate": 0.00019964456535631286,
358
+ "loss": 0.4713,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.015082621714539203,
363
+ "grad_norm": 0.12943406403064728,
364
+ "learning_rate": 0.0001996265826843568,
365
+ "loss": 0.1727,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.015378359395216442,
370
+ "grad_norm": 0.20666781067848206,
371
+ "learning_rate": 0.00019960815711586696,
372
+ "loss": 0.2999,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.01567409707589368,
377
+ "grad_norm": 0.18581970036029816,
378
+ "learning_rate": 0.00019958928873275539,
379
+ "loss": 0.3003,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.015969834756570923,
384
+ "grad_norm": 0.1757449209690094,
385
+ "learning_rate": 0.00019956997761890277,
386
+ "loss": 0.2614,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.01626557243724816,
391
+ "grad_norm": 0.1774774044752121,
392
+ "learning_rate": 0.00019955022386015792,
393
+ "loss": 0.3129,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.0165613101179254,
398
+ "grad_norm": 0.17331115901470184,
399
+ "learning_rate": 0.00019953002754433743,
400
+ "loss": 0.3113,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.01685704779860264,
405
+ "grad_norm": 0.18873649835586548,
406
+ "learning_rate": 0.00019950938876122542,
407
+ "loss": 0.2683,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.01715278547927988,
412
+ "grad_norm": 0.15520928800106049,
413
+ "learning_rate": 0.00019948830760257291,
414
+ "loss": 0.2173,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.017448523159957118,
419
+ "grad_norm": 0.14979037642478943,
420
+ "learning_rate": 0.0001994667841620976,
421
+ "loss": 0.23,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.01774426084063436,
426
+ "grad_norm": 0.15720731019973755,
427
+ "learning_rate": 0.00019944481853548335,
428
+ "loss": 0.2606,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.018039998521311596,
433
+ "grad_norm": 0.18836985528469086,
434
+ "learning_rate": 0.00019942241082037982,
435
+ "loss": 0.34,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.018335736201988837,
440
+ "grad_norm": 0.17339695990085602,
441
+ "learning_rate": 0.00019939956111640197,
442
+ "loss": 0.2927,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.018631473882666075,
447
+ "grad_norm": 0.16999205946922302,
448
+ "learning_rate": 0.00019937626952512964,
449
+ "loss": 0.2591,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.018927211563343316,
454
+ "grad_norm": 0.1601104885339737,
455
+ "learning_rate": 0.0001993525361501072,
456
+ "loss": 0.2929,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.019222949244020553,
461
+ "grad_norm": 0.17350880801677704,
462
+ "learning_rate": 0.00019932836109684286,
463
+ "loss": 0.2854,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.019518686924697794,
468
+ "grad_norm": 0.18091264367103577,
469
+ "learning_rate": 0.00019930374447280845,
470
+ "loss": 0.2839,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.019814424605375032,
475
+ "grad_norm": 0.1761292666196823,
476
+ "learning_rate": 0.00019927868638743875,
477
+ "loss": 0.2545,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.020110162286052273,
482
+ "grad_norm": 0.18896149098873138,
483
+ "learning_rate": 0.0001992531869521312,
484
+ "loss": 0.2782,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.02040589996672951,
489
+ "grad_norm": 0.1839849352836609,
490
+ "learning_rate": 0.00019922724628024515,
491
+ "loss": 0.2596,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.02070163764740675,
496
+ "grad_norm": 0.18426676094532013,
497
+ "learning_rate": 0.0001992008644871016,
498
+ "loss": 0.2921,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.02099737532808399,
503
+ "grad_norm": 0.23805294930934906,
504
+ "learning_rate": 0.00019917404168998256,
505
+ "loss": 0.3308,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.02129311300876123,
510
+ "grad_norm": 0.18368969857692719,
511
+ "learning_rate": 0.0001991467780081305,
512
+ "loss": 0.3328,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.021588850689438468,
517
+ "grad_norm": 0.20601886510849,
518
+ "learning_rate": 0.00019911907356274795,
519
+ "loss": 0.3049,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.02188458837011571,
524
+ "grad_norm": 0.21643660962581635,
525
+ "learning_rate": 0.00019909092847699683,
526
+ "loss": 0.3097,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.022180326050792946,
531
+ "grad_norm": 0.1990053504705429,
532
+ "learning_rate": 0.00019906234287599798,
533
+ "loss": 0.3245,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.022476063731470187,
538
+ "grad_norm": 0.18081244826316833,
539
+ "learning_rate": 0.00019903331688683057,
540
+ "loss": 0.2234,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.022771801412147425,
545
+ "grad_norm": 0.19501319527626038,
546
+ "learning_rate": 0.00019900385063853154,
547
+ "loss": 0.2852,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.023067539092824666,
552
+ "grad_norm": 0.19676417112350464,
553
+ "learning_rate": 0.00019897394426209505,
554
+ "loss": 0.1825,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.023363276773501904,
559
+ "grad_norm": 0.22049355506896973,
560
+ "learning_rate": 0.00019894359789047187,
561
+ "loss": 0.2708,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.023659014454179145,
566
+ "grad_norm": 0.24137771129608154,
567
+ "learning_rate": 0.00019891281165856873,
568
+ "loss": 0.317,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.023954752134856382,
573
+ "grad_norm": 0.2464693933725357,
574
+ "learning_rate": 0.00019888158570324795,
575
+ "loss": 0.281,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.024250489815533623,
580
+ "grad_norm": 0.2559899091720581,
581
+ "learning_rate": 0.0001988499201633265,
582
+ "loss": 0.2977,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.02454622749621086,
587
+ "grad_norm": 0.23781578242778778,
588
+ "learning_rate": 0.00019881781517957562,
589
+ "loss": 0.2156,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.024841965176888102,
594
+ "grad_norm": 0.25769996643066406,
595
+ "learning_rate": 0.0001987852708947202,
596
+ "loss": 0.2588,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.02513770285756534,
601
+ "grad_norm": 0.24173754453659058,
602
+ "learning_rate": 0.00019875228745343794,
603
+ "loss": 0.2689,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.025433440538242577,
608
+ "grad_norm": 0.23814626038074493,
609
+ "learning_rate": 0.0001987188650023589,
610
+ "loss": 0.2404,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.025729178218919818,
615
+ "grad_norm": 0.2124136984348297,
616
+ "learning_rate": 0.0001986850036900648,
617
+ "loss": 0.2472,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.026024915899597056,
622
+ "grad_norm": 0.24799956381320953,
623
+ "learning_rate": 0.00019865070366708836,
624
+ "loss": 0.2429,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.026320653580274297,
629
+ "grad_norm": 0.2826499938964844,
630
+ "learning_rate": 0.00019861596508591255,
631
+ "loss": 0.2906,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.026616391260951534,
636
+ "grad_norm": 0.25857439637184143,
637
+ "learning_rate": 0.00019858078810097002,
638
+ "loss": 0.2139,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.026912128941628775,
643
+ "grad_norm": 0.25622865557670593,
644
+ "learning_rate": 0.00019854517286864245,
645
+ "loss": 0.266,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.027207866622306013,
650
+ "grad_norm": 0.2770698368549347,
651
+ "learning_rate": 0.0001985091195472596,
652
+ "loss": 0.254,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.027503604302983254,
657
+ "grad_norm": 0.31867358088493347,
658
+ "learning_rate": 0.0001984726282970989,
659
+ "loss": 0.2851,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.02779934198366049,
664
+ "grad_norm": 0.35994890332221985,
665
+ "learning_rate": 0.0001984356992803847,
666
+ "loss": 0.321,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.028095079664337733,
671
+ "grad_norm": 0.337107390165329,
672
+ "learning_rate": 0.00019839833266128724,
673
+ "loss": 0.2248,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.02839081734501497,
678
+ "grad_norm": 0.34881696105003357,
679
+ "learning_rate": 0.00019836052860592237,
680
+ "loss": 0.2786,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.02868655502569221,
685
+ "grad_norm": 0.3969687521457672,
686
+ "learning_rate": 0.0001983222872823505,
687
+ "loss": 0.3405,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.02898229270636945,
692
+ "grad_norm": 0.38202965259552,
693
+ "learning_rate": 0.00019828360886057594,
694
+ "loss": 0.275,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.02927803038704669,
699
+ "grad_norm": 0.4236074686050415,
700
+ "learning_rate": 0.00019824449351254616,
701
+ "loss": 0.2973,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.029573768067723927,
706
+ "grad_norm": 0.6627792716026306,
707
+ "learning_rate": 0.00019820494141215104,
708
+ "loss": 0.3571,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.02986950574840117,
713
+ "grad_norm": 0.14578954875469208,
714
+ "learning_rate": 0.000198164952735222,
715
+ "loss": 0.1857,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.030165243429078406,
720
+ "grad_norm": 0.1730443388223648,
721
+ "learning_rate": 0.00019812452765953135,
722
+ "loss": 0.2189,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.030460981109755647,
727
+ "grad_norm": 0.20889230072498322,
728
+ "learning_rate": 0.00019808366636479147,
729
+ "loss": 0.264,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.030756718790432885,
734
+ "grad_norm": 0.19660377502441406,
735
+ "learning_rate": 0.00019804236903265388,
736
+ "loss": 0.3058,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.031052456471110126,
741
+ "grad_norm": 0.16153180599212646,
742
+ "learning_rate": 0.00019800063584670863,
743
+ "loss": 0.2465,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.03134819415178736,
748
+ "grad_norm": 0.17819426953792572,
749
+ "learning_rate": 0.00019795846699248332,
750
+ "loss": 0.2406,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.031643931832464604,
755
+ "grad_norm": 0.16484011709690094,
756
+ "learning_rate": 0.00019791586265744237,
757
+ "loss": 0.211,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.031939669513141845,
762
+ "grad_norm": 0.19172953069210052,
763
+ "learning_rate": 0.00019787282303098617,
764
+ "loss": 0.2686,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.03223540719381908,
769
+ "grad_norm": 0.17775307595729828,
770
+ "learning_rate": 0.0001978293483044502,
771
+ "loss": 0.2464,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.03253114487449632,
776
+ "grad_norm": 0.17548003792762756,
777
+ "learning_rate": 0.00019778543867110426,
778
+ "loss": 0.2489,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.03282688255517356,
783
+ "grad_norm": 0.17837557196617126,
784
+ "learning_rate": 0.00019774109432615147,
785
+ "loss": 0.2305,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.0331226202358508,
790
+ "grad_norm": 0.21005579829216003,
791
+ "learning_rate": 0.00019769631546672756,
792
+ "loss": 0.3109,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.03341835791652804,
797
+ "grad_norm": 0.1606261134147644,
798
+ "learning_rate": 0.00019765110229189988,
799
+ "loss": 0.2297,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.03371409559720528,
804
+ "grad_norm": 0.16127589344978333,
805
+ "learning_rate": 0.00019760545500266657,
806
+ "loss": 0.2121,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.03400983327788252,
811
+ "grad_norm": 0.18138477206230164,
812
+ "learning_rate": 0.00019755937380195568,
813
+ "loss": 0.2556,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.03430557095855976,
818
+ "grad_norm": 0.19160465896129608,
819
+ "learning_rate": 0.00019751285889462423,
820
+ "loss": 0.2534,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.034601308639236994,
825
+ "grad_norm": 0.19009210169315338,
826
+ "learning_rate": 0.0001974659104874573,
827
+ "loss": 0.2289,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.034897046319914235,
832
+ "grad_norm": 0.1938568651676178,
833
+ "learning_rate": 0.0001974185287891671,
834
+ "loss": 0.2483,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.035192784000591476,
839
+ "grad_norm": 0.19120760262012482,
840
+ "learning_rate": 0.0001973707140103921,
841
+ "loss": 0.2522,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.03548852168126872,
846
+ "grad_norm": 0.20597144961357117,
847
+ "learning_rate": 0.00019732246636369605,
848
+ "loss": 0.2776,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.03578425936194595,
853
+ "grad_norm": 0.19169169664382935,
854
+ "learning_rate": 0.00019727378606356703,
855
+ "loss": 0.2821,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.03607999704262319,
860
+ "grad_norm": 0.24905505776405334,
861
+ "learning_rate": 0.00019722467332641656,
862
+ "loss": 0.3392,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.03637573472330043,
867
+ "grad_norm": 0.21315141022205353,
868
+ "learning_rate": 0.00019717512837057855,
869
+ "loss": 0.2514,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.036671472403977674,
874
+ "grad_norm": 0.20183053612709045,
875
+ "learning_rate": 0.0001971251514163083,
876
+ "loss": 0.2522,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.03696721008465491,
881
+ "grad_norm": 0.21825973689556122,
882
+ "learning_rate": 0.0001970747426857817,
883
+ "loss": 0.2249,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.03726294776533215,
888
+ "grad_norm": 0.19961951673030853,
889
+ "learning_rate": 0.00019702390240309404,
890
+ "loss": 0.2081,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.03755868544600939,
895
+ "grad_norm": 0.24127651751041412,
896
+ "learning_rate": 0.0001969726307942592,
897
+ "loss": 0.2543,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.03785442312668663,
902
+ "grad_norm": 0.18847639858722687,
903
+ "learning_rate": 0.00019692092808720846,
904
+ "loss": 0.1804,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.038150160807363866,
909
+ "grad_norm": 0.2245255559682846,
910
+ "learning_rate": 0.0001968687945117896,
911
+ "loss": 0.2615,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.03844589848804111,
916
+ "grad_norm": 0.2330857813358307,
917
+ "learning_rate": 0.00019681623029976588,
918
+ "loss": 0.24,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.03874163616871835,
923
+ "grad_norm": 0.2308180183172226,
924
+ "learning_rate": 0.00019676323568481498,
925
+ "loss": 0.2735,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.03903737384939559,
930
+ "grad_norm": 0.23675177991390228,
931
+ "learning_rate": 0.00019670981090252792,
932
+ "loss": 0.273,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.03933311153007282,
937
+ "grad_norm": 0.2156166285276413,
938
+ "learning_rate": 0.00019665595619040808,
939
+ "loss": 0.2038,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.039628849210750064,
944
+ "grad_norm": 0.22249513864517212,
945
+ "learning_rate": 0.0001966016717878702,
946
+ "loss": 0.2396,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.039924586891427305,
951
+ "grad_norm": 0.25741225481033325,
952
+ "learning_rate": 0.00019654695793623907,
953
+ "loss": 0.2921,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.040220324572104546,
958
+ "grad_norm": 0.25070619583129883,
959
+ "learning_rate": 0.0001964918148787488,
960
+ "loss": 0.2107,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.04051606225278178,
965
+ "grad_norm": 0.2761012017726898,
966
+ "learning_rate": 0.00019643624286054144,
967
+ "loss": 0.2443,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.04081179993345902,
972
+ "grad_norm": 0.22816140949726105,
973
+ "learning_rate": 0.00019638024212866606,
974
+ "loss": 0.1939,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.04110753761413626,
979
+ "grad_norm": 0.2465653121471405,
980
+ "learning_rate": 0.0001963238129320776,
981
+ "loss": 0.2535,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.0414032752948135,
986
+ "grad_norm": 0.38914790749549866,
987
+ "learning_rate": 0.00019626695552163578,
988
+ "loss": 0.3959,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.04169901297549074,
993
+ "grad_norm": 0.2719482481479645,
994
+ "learning_rate": 0.00019620967015010395,
995
+ "loss": 0.273,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.04199475065616798,
1000
+ "grad_norm": 0.26919126510620117,
1001
+ "learning_rate": 0.00019615195707214803,
1002
+ "loss": 0.2197,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.04229048833684522,
1007
+ "grad_norm": 0.2746446132659912,
1008
+ "learning_rate": 0.0001960938165443353,
1009
+ "loss": 0.251,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.04258622601752246,
1014
+ "grad_norm": 0.31786006689071655,
1015
+ "learning_rate": 0.00019603524882513327,
1016
+ "loss": 0.2585,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.042881963698199695,
1021
+ "grad_norm": 0.3586949110031128,
1022
+ "learning_rate": 0.0001959762541749086,
1023
+ "loss": 0.2868,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.043177701378876936,
1028
+ "grad_norm": 0.3204839527606964,
1029
+ "learning_rate": 0.00019591683285592593,
1030
+ "loss": 0.2449,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.04347343905955418,
1035
+ "grad_norm": 0.3199440836906433,
1036
+ "learning_rate": 0.00019585698513234663,
1037
+ "loss": 0.238,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.04376917674023142,
1042
+ "grad_norm": 0.460660457611084,
1043
+ "learning_rate": 0.0001957967112702277,
1044
+ "loss": 0.2707,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.04406491442090865,
1049
+ "grad_norm": 0.3981362581253052,
1050
+ "learning_rate": 0.00019573601153752052,
1051
+ "loss": 0.2259,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.04436065210158589,
1056
+ "grad_norm": 0.5862023234367371,
1057
+ "learning_rate": 0.00019567488620406983,
1058
+ "loss": 0.3031,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.044656389782263134,
1063
+ "grad_norm": 0.14805294573307037,
1064
+ "learning_rate": 0.00019561333554161224,
1065
+ "loss": 0.1515,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.044952127462940375,
1070
+ "grad_norm": 0.2211844027042389,
1071
+ "learning_rate": 0.0001955513598237753,
1072
+ "loss": 0.2199,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.04524786514361761,
1077
+ "grad_norm": 0.20431561768054962,
1078
+ "learning_rate": 0.00019548895932607621,
1079
+ "loss": 0.2077,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.04554360282429485,
1084
+ "grad_norm": 0.1585177332162857,
1085
+ "learning_rate": 0.00019542613432592038,
1086
+ "loss": 0.1702,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.04583934050497209,
1091
+ "grad_norm": 0.21959953010082245,
1092
+ "learning_rate": 0.00019536288510260056,
1093
+ "loss": 0.3018,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.04613507818564933,
1098
+ "grad_norm": 0.18285472691059113,
1099
+ "learning_rate": 0.00019529921193729534,
1100
+ "loss": 0.2621,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.046430815866326566,
1105
+ "grad_norm": 0.19817829132080078,
1106
+ "learning_rate": 0.00019523511511306793,
1107
+ "loss": 0.2542,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.04672655354700381,
1112
+ "grad_norm": 0.2109287828207016,
1113
+ "learning_rate": 0.000195170594914865,
1114
+ "loss": 0.2398,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.04702229122768105,
1119
+ "grad_norm": 0.20559227466583252,
1120
+ "learning_rate": 0.00019510565162951537,
1121
+ "loss": 0.2302,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.04731802890835829,
1126
+ "grad_norm": 0.2374628186225891,
1127
+ "learning_rate": 0.00019504028554572864,
1128
+ "loss": 0.2729,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.047613766589035524,
1133
+ "grad_norm": 0.17768986523151398,
1134
+ "learning_rate": 0.00019497449695409408,
1135
+ "loss": 0.2692,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.047909504269712765,
1140
+ "grad_norm": 0.1690852791070938,
1141
+ "learning_rate": 0.00019490828614707916,
1142
+ "loss": 0.2147,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.048205241950390006,
1147
+ "grad_norm": 0.20444796979427338,
1148
+ "learning_rate": 0.00019484165341902845,
1149
+ "loss": 0.2317,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.04850097963106725,
1154
+ "grad_norm": 0.2058713436126709,
1155
+ "learning_rate": 0.00019477459906616206,
1156
+ "loss": 0.1968,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.04879671731174448,
1161
+ "grad_norm": 0.20283836126327515,
1162
+ "learning_rate": 0.00019470712338657458,
1163
+ "loss": 0.2275,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.04909245499242172,
1168
+ "grad_norm": 0.18474236130714417,
1169
+ "learning_rate": 0.0001946392266802336,
1170
+ "loss": 0.2602,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.04938819267309896,
1175
+ "grad_norm": 0.17107436060905457,
1176
+ "learning_rate": 0.0001945709092489783,
1177
+ "loss": 0.2182,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.049683930353776204,
1182
+ "grad_norm": 0.18627148866653442,
1183
+ "learning_rate": 0.00019450217139651844,
1184
+ "loss": 0.1782,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.04997966803445344,
1189
+ "grad_norm": 0.19079387187957764,
1190
+ "learning_rate": 0.0001944330134284326,
1191
+ "loss": 0.2239,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.05027540571513068,
1196
+ "grad_norm": 0.22388561069965363,
1197
+ "learning_rate": 0.00019436343565216711,
1198
+ "loss": 0.2257,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.05057114339580792,
1203
+ "grad_norm": 0.20720115303993225,
1204
+ "learning_rate": 0.00019429343837703455,
1205
+ "loss": 0.2546,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.050866881076485154,
1210
+ "grad_norm": 0.19800806045532227,
1211
+ "learning_rate": 0.0001942230219142124,
1212
+ "loss": 0.1958,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.051162618757162395,
1217
+ "grad_norm": 0.22758133709430695,
1218
+ "learning_rate": 0.0001941521865767417,
1219
+ "loss": 0.2499,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.051458356437839636,
1224
+ "grad_norm": 0.20841172337532043,
1225
+ "learning_rate": 0.0001940809326795256,
1226
+ "loss": 0.2369,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.05175409411851688,
1231
+ "grad_norm": 0.20555779337882996,
1232
+ "learning_rate": 0.000194009260539328,
1233
+ "loss": 0.2435,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.05204983179919411,
1238
+ "grad_norm": 0.2264283448457718,
1239
+ "learning_rate": 0.0001939371704747721,
1240
+ "loss": 0.2603,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.05234556947987135,
1245
+ "grad_norm": 0.22826440632343292,
1246
+ "learning_rate": 0.00019386466280633906,
1247
+ "loss": 0.2574,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.052641307160548594,
1252
+ "grad_norm": 0.2327851504087448,
1253
+ "learning_rate": 0.00019379173785636646,
1254
+ "loss": 0.2125,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.052937044841225835,
1259
+ "grad_norm": 0.25769078731536865,
1260
+ "learning_rate": 0.000193718395949047,
1261
+ "loss": 0.2594,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.05323278252190307,
1266
+ "grad_norm": 0.24143129587173462,
1267
+ "learning_rate": 0.00019364463741042694,
1268
+ "loss": 0.2285,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.05352852020258031,
1273
+ "grad_norm": 0.21483063697814941,
1274
+ "learning_rate": 0.00019357046256840473,
1275
+ "loss": 0.1883,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.05382425788325755,
1280
+ "grad_norm": 0.2387738972902298,
1281
+ "learning_rate": 0.00019349587175272948,
1282
+ "loss": 0.2697,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.05411999556393479,
1287
+ "grad_norm": 0.2653301954269409,
1288
+ "learning_rate": 0.0001934208652949996,
1289
+ "loss": 0.2403,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.054415733244612026,
1294
+ "grad_norm": 0.28791022300720215,
1295
+ "learning_rate": 0.00019334544352866127,
1296
+ "loss": 0.268,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.05471147092528927,
1301
+ "grad_norm": 0.2307739108800888,
1302
+ "learning_rate": 0.00019326960678900688,
1303
+ "loss": 0.2088,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.05500720860596651,
1308
+ "grad_norm": 0.2275734543800354,
1309
+ "learning_rate": 0.00019319335541317361,
1310
+ "loss": 0.1935,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.05530294628664375,
1315
+ "grad_norm": 0.23581242561340332,
1316
+ "learning_rate": 0.00019311668974014208,
1317
+ "loss": 0.2037,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.05559868396732098,
1322
+ "grad_norm": 0.25955161452293396,
1323
+ "learning_rate": 0.00019303961011073447,
1324
+ "loss": 0.2216,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.055894421647998224,
1329
+ "grad_norm": 0.262517511844635,
1330
+ "learning_rate": 0.00019296211686761346,
1331
+ "loss": 0.2143,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.056190159328675465,
1336
+ "grad_norm": 0.3077569305896759,
1337
+ "learning_rate": 0.00019288421035528028,
1338
+ "loss": 0.2356,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.056485897009352706,
1343
+ "grad_norm": 0.26791897416114807,
1344
+ "learning_rate": 0.00019280589092007352,
1345
+ "loss": 0.1884,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.05678163469002994,
1350
+ "grad_norm": 0.27822402119636536,
1351
+ "learning_rate": 0.00019272715891016735,
1352
+ "loss": 0.2118,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.05707737237070718,
1357
+ "grad_norm": 0.2592899203300476,
1358
+ "learning_rate": 0.00019264801467557007,
1359
+ "loss": 0.1402,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.05737311005138442,
1364
+ "grad_norm": 0.37037453055381775,
1365
+ "learning_rate": 0.00019256845856812266,
1366
+ "loss": 0.3472,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.057668847732061664,
1371
+ "grad_norm": 0.30506840348243713,
1372
+ "learning_rate": 0.000192488490941497,
1373
+ "loss": 0.1907,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.0579645854127389,
1378
+ "grad_norm": 0.3820033669471741,
1379
+ "learning_rate": 0.00019240811215119448,
1380
+ "loss": 0.2557,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.05826032309341614,
1385
+ "grad_norm": 0.40331634879112244,
1386
+ "learning_rate": 0.00019232732255454422,
1387
+ "loss": 0.2579,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.05855606077409338,
1392
+ "grad_norm": 0.4118432104587555,
1393
+ "learning_rate": 0.00019224612251070175,
1394
+ "loss": 0.2316,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.05885179845477062,
1399
+ "grad_norm": 0.4977587163448334,
1400
+ "learning_rate": 0.0001921645123806472,
1401
+ "loss": 0.2964,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.059147536135447855,
1406
+ "grad_norm": 0.5816993713378906,
1407
+ "learning_rate": 0.0001920824925271838,
1408
+ "loss": 0.2308,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.059443273816125096,
1413
+ "grad_norm": 0.1586022526025772,
1414
+ "learning_rate": 0.0001920000633149362,
1415
+ "loss": 0.1695,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.05973901149680234,
1420
+ "grad_norm": 0.17268988490104675,
1421
+ "learning_rate": 0.00019191722511034884,
1422
+ "loss": 0.1737,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.06003474917747958,
1427
+ "grad_norm": 0.17306619882583618,
1428
+ "learning_rate": 0.00019183397828168448,
1429
+ "loss": 0.1928,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.06033048685815681,
1434
+ "grad_norm": 0.18508224189281464,
1435
+ "learning_rate": 0.00019175032319902234,
1436
+ "loss": 0.2293,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.06062622453883405,
1441
+ "grad_norm": 0.15483330190181732,
1442
+ "learning_rate": 0.00019166626023425662,
1443
+ "loss": 0.1827,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.060921962219511294,
1448
+ "grad_norm": 0.190659299492836,
1449
+ "learning_rate": 0.00019158178976109476,
1450
+ "loss": 0.2827,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.061217699900188535,
1455
+ "grad_norm": 0.16438104212284088,
1456
+ "learning_rate": 0.0001914969121550558,
1457
+ "loss": 0.2186,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.06151343758086577,
1462
+ "grad_norm": 0.17598582804203033,
1463
+ "learning_rate": 0.00019141162779346874,
1464
+ "loss": 0.1971,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.06180917526154301,
1469
+ "grad_norm": 0.18765893578529358,
1470
+ "learning_rate": 0.00019132593705547082,
1471
+ "loss": 0.1996,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.06210491294222025,
1476
+ "grad_norm": 0.21454760432243347,
1477
+ "learning_rate": 0.00019123984032200586,
1478
+ "loss": 0.2427,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.06240065062289749,
1483
+ "grad_norm": 0.21339420974254608,
1484
+ "learning_rate": 0.00019115333797582254,
1485
+ "loss": 0.2539,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.06269638830357473,
1490
+ "grad_norm": 0.18333065509796143,
1491
+ "learning_rate": 0.00019106643040147278,
1492
+ "loss": 0.2447,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.06299212598425197,
1497
+ "grad_norm": 0.19549886882305145,
1498
+ "learning_rate": 0.00019097911798530987,
1499
+ "loss": 0.2451,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.06328786366492921,
1504
+ "grad_norm": 0.19182579219341278,
1505
+ "learning_rate": 0.00019089140111548696,
1506
+ "loss": 0.2058,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.06358360134560645,
1511
+ "grad_norm": 0.19501961767673492,
1512
+ "learning_rate": 0.00019080328018195513,
1513
+ "loss": 0.2365,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.06387933902628369,
1518
+ "grad_norm": 0.19913062453269958,
1519
+ "learning_rate": 0.0001907147555764618,
1520
+ "loss": 0.2204,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.06417507670696093,
1525
+ "grad_norm": 0.1938629001379013,
1526
+ "learning_rate": 0.00019062582769254895,
1527
+ "loss": 0.2554,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.06447081438763816,
1532
+ "grad_norm": 0.20500774681568146,
1533
+ "learning_rate": 0.00019053649692555135,
1534
+ "loss": 0.2719,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.0647665520683154,
1539
+ "grad_norm": 0.19601133465766907,
1540
+ "learning_rate": 0.00019044676367259476,
1541
+ "loss": 0.2176,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.06506228974899264,
1546
+ "grad_norm": 0.21002735197544098,
1547
+ "learning_rate": 0.00019035662833259432,
1548
+ "loss": 0.2987,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.06535802742966988,
1553
+ "grad_norm": 0.19716577231884003,
1554
+ "learning_rate": 0.00019026609130625257,
1555
+ "loss": 0.2103,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.06565376511034712,
1560
+ "grad_norm": 0.20321358740329742,
1561
+ "learning_rate": 0.00019017515299605788,
1562
+ "loss": 0.2373,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.06594950279102436,
1567
+ "grad_norm": 0.21129213273525238,
1568
+ "learning_rate": 0.00019008381380628247,
1569
+ "loss": 0.2284,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.0662452404717016,
1574
+ "grad_norm": 0.20547550916671753,
1575
+ "learning_rate": 0.00018999207414298067,
1576
+ "loss": 0.2162,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.06654097815237885,
1581
+ "grad_norm": 0.19809496402740479,
1582
+ "learning_rate": 0.00018989993441398726,
1583
+ "loss": 0.2176,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.06683671583305607,
1588
+ "grad_norm": 0.23077711462974548,
1589
+ "learning_rate": 0.00018980739502891546,
1590
+ "loss": 0.2389,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.06713245351373331,
1595
+ "grad_norm": 0.24560177326202393,
1596
+ "learning_rate": 0.0001897144563991552,
1597
+ "loss": 0.2347,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.06742819119441056,
1602
+ "grad_norm": 0.24137191474437714,
1603
+ "learning_rate": 0.00018962111893787128,
1604
+ "loss": 0.2191,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.0677239288750878,
1609
+ "grad_norm": 0.23104238510131836,
1610
+ "learning_rate": 0.00018952738306000151,
1611
+ "loss": 0.2207,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.06801966655576504,
1616
+ "grad_norm": 0.22218018770217896,
1617
+ "learning_rate": 0.00018943324918225494,
1618
+ "loss": 0.21,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.06831540423644228,
1623
+ "grad_norm": 0.21070846915245056,
1624
+ "learning_rate": 0.0001893387177231099,
1625
+ "loss": 0.165,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.06861114191711952,
1630
+ "grad_norm": 0.2444663941860199,
1631
+ "learning_rate": 0.0001892437891028122,
1632
+ "loss": 0.2336,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.06890687959779676,
1637
+ "grad_norm": 0.2369096875190735,
1638
+ "learning_rate": 0.0001891484637433733,
1639
+ "loss": 0.2232,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.06920261727847399,
1644
+ "grad_norm": 0.2586706280708313,
1645
+ "learning_rate": 0.00018905274206856837,
1646
+ "loss": 0.2468,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.06949835495915123,
1651
+ "grad_norm": 0.30194905400276184,
1652
+ "learning_rate": 0.00018895662450393438,
1653
+ "loss": 0.254,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.06979409263982847,
1658
+ "grad_norm": 0.2761548161506653,
1659
+ "learning_rate": 0.00018886011147676833,
1660
+ "loss": 0.2953,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.07008983032050571,
1665
+ "grad_norm": 0.23956750333309174,
1666
+ "learning_rate": 0.00018876320341612522,
1667
+ "loss": 0.2249,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.07038556800118295,
1672
+ "grad_norm": 0.2570217549800873,
1673
+ "learning_rate": 0.00018866590075281624,
1674
+ "loss": 0.2153,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.0706813056818602,
1679
+ "grad_norm": 0.2857867181301117,
1680
+ "learning_rate": 0.00018856820391940674,
1681
+ "loss": 0.3025,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.07097704336253743,
1686
+ "grad_norm": 0.25232836604118347,
1687
+ "learning_rate": 0.00018847011335021449,
1688
+ "loss": 0.201,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.07127278104321468,
1693
+ "grad_norm": 0.28288912773132324,
1694
+ "learning_rate": 0.00018837162948130752,
1695
+ "loss": 0.2385,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.0715685187238919,
1700
+ "grad_norm": 0.3228309154510498,
1701
+ "learning_rate": 0.00018827275275050233,
1702
+ "loss": 0.2761,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.07186425640456914,
1707
+ "grad_norm": 0.2894141972064972,
1708
+ "learning_rate": 0.00018817348359736203,
1709
+ "loss": 0.2615,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.07215999408524638,
1714
+ "grad_norm": 0.3046562373638153,
1715
+ "learning_rate": 0.00018807382246319412,
1716
+ "loss": 0.237,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.07245573176592363,
1721
+ "grad_norm": 0.3270159661769867,
1722
+ "learning_rate": 0.00018797376979104872,
1723
+ "loss": 0.209,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.07275146944660087,
1728
+ "grad_norm": 0.2986398935317993,
1729
+ "learning_rate": 0.00018787332602571662,
1730
+ "loss": 0.2032,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.07304720712727811,
1735
+ "grad_norm": 0.3203541040420532,
1736
+ "learning_rate": 0.00018777249161372713,
1737
+ "loss": 0.2154,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.07334294480795535,
1742
+ "grad_norm": 0.3694257438182831,
1743
+ "learning_rate": 0.00018767126700334634,
1744
+ "loss": 0.1959,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.07363868248863259,
1749
+ "grad_norm": 0.6173413991928101,
1750
+ "learning_rate": 0.0001875696526445749,
1751
+ "loss": 0.1682,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.07393442016930982,
1756
+ "grad_norm": 0.5118496417999268,
1757
+ "learning_rate": 0.0001874676489891461,
1758
+ "loss": 0.276,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.07423015784998706,
1763
+ "grad_norm": 0.15977254509925842,
1764
+ "learning_rate": 0.00018736525649052394,
1765
+ "loss": 0.2124,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.0745258955306643,
1770
+ "grad_norm": 0.15199963748455048,
1771
+ "learning_rate": 0.00018726247560390099,
1772
+ "loss": 0.1718,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.07482163321134154,
1777
+ "grad_norm": 0.16801315546035767,
1778
+ "learning_rate": 0.00018715930678619644,
1779
+ "loss": 0.1961,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.07511737089201878,
1784
+ "grad_norm": 0.17173269391059875,
1785
+ "learning_rate": 0.00018705575049605413,
1786
+ "loss": 0.2053,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.07541310857269602,
1791
+ "grad_norm": 0.19244447350502014,
1792
+ "learning_rate": 0.00018695180719384029,
1793
+ "loss": 0.2841,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.07570884625337326,
1798
+ "grad_norm": 0.1731448471546173,
1799
+ "learning_rate": 0.00018684747734164177,
1800
+ "loss": 0.2246,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.07600458393405049,
1805
+ "grad_norm": 0.1740599274635315,
1806
+ "learning_rate": 0.00018674276140326376,
1807
+ "loss": 0.229,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.07630032161472773,
1812
+ "grad_norm": 0.15664459764957428,
1813
+ "learning_rate": 0.00018663765984422786,
1814
+ "loss": 0.2015,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.07659605929540497,
1819
+ "grad_norm": 0.18093277513980865,
1820
+ "learning_rate": 0.00018653217313177004,
1821
+ "loss": 0.2371,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.07689179697608221,
1826
+ "grad_norm": 0.15789927542209625,
1827
+ "learning_rate": 0.00018642630173483832,
1828
+ "loss": 0.19,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.07718753465675945,
1833
+ "grad_norm": 0.1597701758146286,
1834
+ "learning_rate": 0.00018632004612409103,
1835
+ "loss": 0.2096,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.0774832723374367,
1840
+ "grad_norm": 0.17183595895767212,
1841
+ "learning_rate": 0.00018621340677189453,
1842
+ "loss": 0.2333,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.07777901001811394,
1847
+ "grad_norm": 0.17315109074115753,
1848
+ "learning_rate": 0.00018610638415232097,
1849
+ "loss": 0.2215,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.07807474769879118,
1854
+ "grad_norm": 0.17420059442520142,
1855
+ "learning_rate": 0.00018599897874114652,
1856
+ "loss": 0.2216,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.0783704853794684,
1861
+ "grad_norm": 0.19842545688152313,
1862
+ "learning_rate": 0.00018589119101584898,
1863
+ "loss": 0.212,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.07866622306014565,
1868
+ "grad_norm": 0.18231399357318878,
1869
+ "learning_rate": 0.00018578302145560584,
1870
+ "loss": 0.2284,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.07896196074082289,
1875
+ "grad_norm": 0.1868034154176712,
1876
+ "learning_rate": 0.00018567447054129195,
1877
+ "loss": 0.2458,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.07925769842150013,
1882
+ "grad_norm": 0.19086702167987823,
1883
+ "learning_rate": 0.00018556553875547754,
1884
+ "loss": 0.2335,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.07955343610217737,
1889
+ "grad_norm": 0.2202424705028534,
1890
+ "learning_rate": 0.00018545622658242607,
1891
+ "loss": 0.282,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.07984917378285461,
1896
+ "grad_norm": 0.20102711021900177,
1897
+ "learning_rate": 0.00018534653450809197,
1898
+ "loss": 0.2376,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.08014491146353185,
1903
+ "grad_norm": 0.2291051596403122,
1904
+ "learning_rate": 0.00018523646302011867,
1905
+ "loss": 0.2448,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.08044064914420909,
1910
+ "grad_norm": 0.20590786635875702,
1911
+ "learning_rate": 0.00018512601260783606,
1912
+ "loss": 0.2235,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.08073638682488632,
1917
+ "grad_norm": 0.18361449241638184,
1918
+ "learning_rate": 0.00018501518376225887,
1919
+ "loss": 0.1882,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.08103212450556356,
1924
+ "grad_norm": 0.20607051253318787,
1925
+ "learning_rate": 0.00018490397697608395,
1926
+ "loss": 0.216,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.0813278621862408,
1931
+ "grad_norm": 0.20951667428016663,
1932
+ "learning_rate": 0.0001847923927436884,
1933
+ "loss": 0.2283,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.08162359986691804,
1938
+ "grad_norm": 0.23473979532718658,
1939
+ "learning_rate": 0.00018468043156112728,
1940
+ "loss": 0.2582,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.08191933754759528,
1945
+ "grad_norm": 0.1933351308107376,
1946
+ "learning_rate": 0.0001845680939261314,
1947
+ "loss": 0.1938,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.08221507522827252,
1952
+ "grad_norm": 0.23549608886241913,
1953
+ "learning_rate": 0.00018445538033810515,
1954
+ "loss": 0.2166,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.08251081290894977,
1959
+ "grad_norm": 0.2569220960140228,
1960
+ "learning_rate": 0.00018434229129812418,
1961
+ "loss": 0.2697,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.082806550589627,
1966
+ "grad_norm": 0.22212399542331696,
1967
+ "learning_rate": 0.0001842288273089332,
1968
+ "loss": 0.26,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.08310228827030423,
1973
+ "grad_norm": 0.21168506145477295,
1974
+ "learning_rate": 0.00018411498887494396,
1975
+ "loss": 0.2008,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.08339802595098147,
1980
+ "grad_norm": 0.23749881982803345,
1981
+ "learning_rate": 0.00018400077650223263,
1982
+ "loss": 0.2163,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.08369376363165872,
1987
+ "grad_norm": 0.23951789736747742,
1988
+ "learning_rate": 0.0001838861906985379,
1989
+ "loss": 0.2235,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.08398950131233596,
1994
+ "grad_norm": 0.23467004299163818,
1995
+ "learning_rate": 0.00018377123197325842,
1996
+ "loss": 0.2119,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.0842852389930132,
2001
+ "grad_norm": 0.25748157501220703,
2002
+ "learning_rate": 0.00018365590083745085,
2003
+ "loss": 0.2498,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.08458097667369044,
2008
+ "grad_norm": 0.2640005946159363,
2009
+ "learning_rate": 0.00018354019780382735,
2010
+ "loss": 0.2297,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.08487671435436768,
2015
+ "grad_norm": 0.22059418261051178,
2016
+ "learning_rate": 0.0001834241233867533,
2017
+ "loss": 0.1856,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.08517245203504492,
2022
+ "grad_norm": 0.2318236380815506,
2023
+ "learning_rate": 0.00018330767810224524,
2024
+ "loss": 0.186,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.08546818971572215,
2029
+ "grad_norm": 0.22884918749332428,
2030
+ "learning_rate": 0.0001831908624679683,
2031
+ "loss": 0.2019,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.08576392739639939,
2036
+ "grad_norm": 0.26514625549316406,
2037
+ "learning_rate": 0.0001830736770032341,
2038
+ "loss": 0.2338,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.08605966507707663,
2043
+ "grad_norm": 0.2545234262943268,
2044
+ "learning_rate": 0.0001829561222289984,
2045
+ "loss": 0.2051,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.08635540275775387,
2050
+ "grad_norm": 0.31720927357673645,
2051
+ "learning_rate": 0.00018283819866785853,
2052
+ "loss": 0.2127,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.08665114043843111,
2057
+ "grad_norm": 0.24507926404476166,
2058
+ "learning_rate": 0.0001827199068440516,
2059
+ "loss": 0.1481,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.08694687811910835,
2064
+ "grad_norm": 0.2604232728481293,
2065
+ "learning_rate": 0.00018260124728345162,
2066
+ "loss": 0.1804,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.0872426157997856,
2071
+ "grad_norm": 0.2785932123661041,
2072
+ "learning_rate": 0.00018248222051356754,
2073
+ "loss": 0.2188,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.08753835348046284,
2078
+ "grad_norm": 0.3473379611968994,
2079
+ "learning_rate": 0.00018236282706354063,
2080
+ "loss": 0.2223,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.08783409116114006,
2085
+ "grad_norm": 0.35401713848114014,
2086
+ "learning_rate": 0.00018224306746414238,
2087
+ "loss": 0.2602,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.0881298288418173,
2092
+ "grad_norm": 0.4033154249191284,
2093
+ "learning_rate": 0.00018212294224777197,
2094
+ "loss": 0.2324,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.08842556652249454,
2099
+ "grad_norm": 0.5243091583251953,
2100
+ "learning_rate": 0.00018200245194845399,
2101
+ "loss": 0.3447,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.08872130420317179,
2106
+ "grad_norm": 0.5621427297592163,
2107
+ "learning_rate": 0.00018188159710183594,
2108
+ "loss": 0.2627,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.08901704188384903,
2113
+ "grad_norm": 0.1358180195093155,
2114
+ "learning_rate": 0.000181760378245186,
2115
+ "loss": 0.1579,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.08931277956452627,
2120
+ "grad_norm": 0.16979822516441345,
2121
+ "learning_rate": 0.00018163879591739067,
2122
+ "loss": 0.2157,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.08960851724520351,
2127
+ "grad_norm": 0.18489453196525574,
2128
+ "learning_rate": 0.0001815168506589521,
2129
+ "loss": 0.2149,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.08990425492588075,
2134
+ "grad_norm": 0.19990918040275574,
2135
+ "learning_rate": 0.000181394543011986,
2136
+ "loss": 0.254,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.09019999260655798,
2141
+ "grad_norm": 0.17698073387145996,
2142
+ "learning_rate": 0.00018127187352021907,
2143
+ "loss": 0.2131,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.09049573028723522,
2148
+ "grad_norm": 0.1820111721754074,
2149
+ "learning_rate": 0.0001811488427289866,
2150
+ "loss": 0.2372,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.09079146796791246,
2155
+ "grad_norm": 0.1698734015226364,
2156
+ "learning_rate": 0.00018102545118523007,
2157
+ "loss": 0.2199,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.0910872056485897,
2162
+ "grad_norm": 0.17691490054130554,
2163
+ "learning_rate": 0.00018090169943749476,
2164
+ "loss": 0.2474,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.09138294332926694,
2169
+ "grad_norm": 0.1919829100370407,
2170
+ "learning_rate": 0.00018077758803592718,
2171
+ "loss": 0.2447,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.09167868100994418,
2176
+ "grad_norm": 0.4307519495487213,
2177
+ "learning_rate": 0.00018065311753227273,
2178
+ "loss": 0.2342,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.09197441869062142,
2183
+ "grad_norm": 0.18838980793952942,
2184
+ "learning_rate": 0.0001805282884798732,
2185
+ "loss": 0.1829,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.09227015637129866,
2190
+ "grad_norm": 0.1960785984992981,
2191
+ "learning_rate": 0.00018040310143366446,
2192
+ "loss": 0.2279,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.09256589405197589,
2197
+ "grad_norm": 0.1780913770198822,
2198
+ "learning_rate": 0.00018027755695017368,
2199
+ "loss": 0.222,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.09286163173265313,
2204
+ "grad_norm": 0.1910991370677948,
2205
+ "learning_rate": 0.00018015165558751717,
2206
+ "loss": 0.2378,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.09315736941333037,
2211
+ "grad_norm": 0.17035876214504242,
2212
+ "learning_rate": 0.00018002539790539773,
2213
+ "loss": 0.1834,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.09345310709400761,
2218
+ "grad_norm": 0.18461062014102936,
2219
+ "learning_rate": 0.00017989878446510215,
2220
+ "loss": 0.2255,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.09374884477468486,
2225
+ "grad_norm": 0.18789273500442505,
2226
+ "learning_rate": 0.00017977181582949888,
2227
+ "loss": 0.2236,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.0940445824553621,
2232
+ "grad_norm": 0.18466150760650635,
2233
+ "learning_rate": 0.0001796444925630353,
2234
+ "loss": 0.1987,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.09434032013603934,
2239
+ "grad_norm": 0.2048148661851883,
2240
+ "learning_rate": 0.00017951681523173542,
2241
+ "loss": 0.2059,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.09463605781671658,
2246
+ "grad_norm": 0.2097977101802826,
2247
+ "learning_rate": 0.0001793887844031972,
2248
+ "loss": 0.231,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.0949317954973938,
2253
+ "grad_norm": 0.20636926591396332,
2254
+ "learning_rate": 0.00017926040064659014,
2255
+ "loss": 0.2326,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.09522753317807105,
2260
+ "grad_norm": 0.2094830870628357,
2261
+ "learning_rate": 0.0001791316645326526,
2262
+ "loss": 0.2059,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.09552327085874829,
2267
+ "grad_norm": 0.22407394647598267,
2268
+ "learning_rate": 0.00017900257663368963,
2269
+ "loss": 0.226,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.09581900853942553,
2274
+ "grad_norm": 0.19603627920150757,
2275
+ "learning_rate": 0.0001788731375235698,
2276
+ "loss": 0.2188,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.09611474622010277,
2281
+ "grad_norm": 0.23884060978889465,
2282
+ "learning_rate": 0.00017874334777772327,
2283
+ "loss": 0.2372,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.09641048390078001,
2288
+ "grad_norm": 0.22886501252651215,
2289
+ "learning_rate": 0.00017861320797313892,
2290
+ "loss": 0.2336,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.09670622158145725,
2295
+ "grad_norm": 0.22485503554344177,
2296
+ "learning_rate": 0.0001784827186883618,
2297
+ "loss": 0.2339,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.0970019592621345,
2302
+ "grad_norm": 0.21763861179351807,
2303
+ "learning_rate": 0.00017835188050349064,
2304
+ "loss": 0.2002,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.09729769694281172,
2309
+ "grad_norm": 0.2242451012134552,
2310
+ "learning_rate": 0.00017822069400017516,
2311
+ "loss": 0.2347,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.09759343462348896,
2316
+ "grad_norm": 0.24562625586986542,
2317
+ "learning_rate": 0.00017808915976161362,
2318
+ "loss": 0.2339,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.0978891723041662,
2323
+ "grad_norm": 0.2314700335264206,
2324
+ "learning_rate": 0.00017795727837255015,
2325
+ "loss": 0.2708,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.09818490998484344,
2330
+ "grad_norm": 0.26339125633239746,
2331
+ "learning_rate": 0.00017782505041927216,
2332
+ "loss": 0.2557,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.09848064766552068,
2337
+ "grad_norm": 0.22803835570812225,
2338
+ "learning_rate": 0.00017769247648960774,
2339
+ "loss": 0.196,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.09877638534619793,
2344
+ "grad_norm": 0.22814923524856567,
2345
+ "learning_rate": 0.00017755955717292296,
2346
+ "loss": 0.1687,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.09907212302687517,
2351
+ "grad_norm": 0.25240692496299744,
2352
+ "learning_rate": 0.00017742629306011944,
2353
+ "loss": 0.2064,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.09936786070755241,
2358
+ "grad_norm": 0.23173846304416656,
2359
+ "learning_rate": 0.00017729268474363154,
2360
+ "loss": 0.1797,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.09966359838822964,
2365
+ "grad_norm": 0.2367689609527588,
2366
+ "learning_rate": 0.0001771587328174239,
2367
+ "loss": 0.1796,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.09995933606890688,
2372
+ "grad_norm": 0.2612314522266388,
2373
+ "learning_rate": 0.0001770244378769885,
2374
+ "loss": 0.2132,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.10025507374958412,
2379
+ "grad_norm": 0.2403004765510559,
2380
+ "learning_rate": 0.0001768898005193425,
2381
+ "loss": 0.1919,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.10055081143026136,
2386
+ "grad_norm": 0.26991987228393555,
2387
+ "learning_rate": 0.000176754821343025,
2388
+ "loss": 0.2262,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.1008465491109386,
2393
+ "grad_norm": 0.28544318675994873,
2394
+ "learning_rate": 0.0001766195009480949,
2395
+ "loss": 0.2229,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.10114228679161584,
2400
+ "grad_norm": 0.2717716693878174,
2401
+ "learning_rate": 0.0001764838399361279,
2402
+ "loss": 0.2146,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.10143802447229308,
2407
+ "grad_norm": 0.2891225218772888,
2408
+ "learning_rate": 0.00017634783891021393,
2409
+ "loss": 0.2462,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.10173376215297031,
2414
+ "grad_norm": 0.3248477578163147,
2415
+ "learning_rate": 0.00017621149847495458,
2416
+ "loss": 0.2475,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.10202949983364755,
2421
+ "grad_norm": 0.3657064735889435,
2422
+ "learning_rate": 0.00017607481923646016,
2423
+ "loss": 0.28,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.10232523751432479,
2428
+ "grad_norm": 0.3362722396850586,
2429
+ "learning_rate": 0.0001759378018023473,
2430
+ "loss": 0.2462,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.10262097519500203,
2435
+ "grad_norm": 0.3996289074420929,
2436
+ "learning_rate": 0.00017580044678173592,
2437
+ "loss": 0.2258,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.10291671287567927,
2442
+ "grad_norm": 0.36670979857444763,
2443
+ "learning_rate": 0.00017566275478524693,
2444
+ "loss": 0.2466,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.10321245055635651,
2449
+ "grad_norm": 0.48458173871040344,
2450
+ "learning_rate": 0.0001755247264249991,
2451
+ "loss": 0.3022,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.10350818823703375,
2456
+ "grad_norm": 0.49845030903816223,
2457
+ "learning_rate": 0.0001753863623146066,
2458
+ "loss": 0.2424,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.103803925917711,
2463
+ "grad_norm": 0.11847740411758423,
2464
+ "learning_rate": 0.00017524766306917618,
2465
+ "loss": 0.1449,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.10409966359838822,
2470
+ "grad_norm": 0.14606598019599915,
2471
+ "learning_rate": 0.0001751086293053045,
2472
+ "loss": 0.1713,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.10439540127906546,
2477
+ "grad_norm": 0.1666148602962494,
2478
+ "learning_rate": 0.0001749692616410753,
2479
+ "loss": 0.2063,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.1046911389597427,
2484
+ "grad_norm": 0.1671825349330902,
2485
+ "learning_rate": 0.00017482956069605668,
2486
+ "loss": 0.2283,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.10498687664041995,
2491
+ "grad_norm": 0.17825308442115784,
2492
+ "learning_rate": 0.00017468952709129846,
2493
+ "loss": 0.2379,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.10528261432109719,
2498
+ "grad_norm": 0.1678950935602188,
2499
+ "learning_rate": 0.00017454916144932922,
2500
+ "loss": 0.2227,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.10557835200177443,
2505
+ "grad_norm": 0.16522592306137085,
2506
+ "learning_rate": 0.0001744084643941536,
2507
+ "loss": 0.2099,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.10587408968245167,
2512
+ "grad_norm": 0.17215241491794586,
2513
+ "learning_rate": 0.00017426743655124974,
2514
+ "loss": 0.2612,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.10616982736312891,
2519
+ "grad_norm": 0.17087267339229584,
2520
+ "learning_rate": 0.0001741260785475661,
2521
+ "loss": 0.2301,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.10646556504380614,
2526
+ "grad_norm": 0.1661638766527176,
2527
+ "learning_rate": 0.00017398439101151905,
2528
+ "loss": 0.2174,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.10676130272448338,
2533
+ "grad_norm": 0.17075875401496887,
2534
+ "learning_rate": 0.00017384237457298987,
2535
+ "loss": 0.1701,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.10705704040516062,
2540
+ "grad_norm": 0.1797911673784256,
2541
+ "learning_rate": 0.00017370002986332193,
2542
+ "loss": 0.2192,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.10735277808583786,
2547
+ "grad_norm": 0.17848677933216095,
2548
+ "learning_rate": 0.00017355735751531807,
2549
+ "loss": 0.2193,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.1076485157665151,
2554
+ "grad_norm": 0.17944815754890442,
2555
+ "learning_rate": 0.00017341435816323756,
2556
+ "loss": 0.2008,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.10794425344719234,
2561
+ "grad_norm": 0.17322401702404022,
2562
+ "learning_rate": 0.00017327103244279348,
2563
+ "loss": 0.2084,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.10823999112786958,
2568
+ "grad_norm": 0.19021335244178772,
2569
+ "learning_rate": 0.00017312738099114973,
2570
+ "loss": 0.2398,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.10853572880854682,
2575
+ "grad_norm": 0.18541230261325836,
2576
+ "learning_rate": 0.00017298340444691835,
2577
+ "loss": 0.2618,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.10883146648922405,
2582
+ "grad_norm": 0.18366391956806183,
2583
+ "learning_rate": 0.00017283910345015647,
2584
+ "loss": 0.2356,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.10912720416990129,
2589
+ "grad_norm": 0.1941191852092743,
2590
+ "learning_rate": 0.0001726944786423637,
2591
+ "loss": 0.2228,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.10942294185057853,
2596
+ "grad_norm": 0.16953422129154205,
2597
+ "learning_rate": 0.00017254953066647913,
2598
+ "loss": 0.1555,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.10971867953125577,
2603
+ "grad_norm": 0.20326456427574158,
2604
+ "learning_rate": 0.00017240426016687863,
2605
+ "loss": 0.2514,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.11001441721193302,
2610
+ "grad_norm": 0.1932348906993866,
2611
+ "learning_rate": 0.00017225866778937165,
2612
+ "loss": 0.2068,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.11031015489261026,
2617
+ "grad_norm": 0.21190403401851654,
2618
+ "learning_rate": 0.00017211275418119876,
2619
+ "loss": 0.2196,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.1106058925732875,
2624
+ "grad_norm": 0.20619221031665802,
2625
+ "learning_rate": 0.0001719665199910285,
2626
+ "loss": 0.2368,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.11090163025396474,
2631
+ "grad_norm": 0.1878051608800888,
2632
+ "learning_rate": 0.00017181996586895454,
2633
+ "loss": 0.1801,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.11090163025396474,
2638
+ "eval_loss": 0.21186766028404236,
2639
+ "eval_runtime": 323.3922,
2640
+ "eval_samples_per_second": 17.61,
2641
+ "eval_steps_per_second": 8.807,
2642
+ "step": 375
2643
+ }
2644
+ ],
2645
+ "logging_steps": 1,
2646
+ "max_steps": 1500,
2647
+ "num_input_tokens_seen": 0,
2648
+ "num_train_epochs": 1,
2649
+ "save_steps": 375,
2650
+ "stateful_callbacks": {
2651
+ "TrainerControl": {
2652
+ "args": {
2653
+ "should_epoch_stop": false,
2654
+ "should_evaluate": false,
2655
+ "should_log": false,
2656
+ "should_save": true,
2657
+ "should_training_stop": false
2658
+ },
2659
+ "attributes": {}
2660
+ }
2661
+ },
2662
+ "total_flos": 4.959891216264069e+17,
2663
+ "train_batch_size": 2,
2664
+ "trial_name": null,
2665
+ "trial_params": null
2666
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87a7a546108878408ce04c3afb49572c63003bd4a6cae67c6f62a1c88d85af86
3
+ size 6840