Update README.md
Browse files
README.md
CHANGED
|
@@ -5,29 +5,35 @@ tags:
|
|
| 5 |
- transformers
|
| 6 |
- unsloth
|
| 7 |
- whisper
|
|
|
|
|
|
|
| 8 |
license: apache-2.0
|
| 9 |
language:
|
| 10 |
- ht
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
-
#
|
| 17 |
|
| 18 |
-
This model is a fine-tuned version of [openai/whisper-
|
| 19 |
The main objective is to create a **99% accurate Haitian Creole Speech-to-Text model**, capable of transcribing diverse Haitian voices across accents, regions, and speaking styles.
|
| 20 |
|
| 21 |
---
|
| 22 |
|
| 23 |
## 🧠 Model description
|
| 24 |
|
| 25 |
-
**
|
| 26 |
|
| 27 |
-
- **Architecture**: Whisper
|
| 28 |
- **Fine-tuned for**: Haitian Creole (Kreyòl Ayisyen)
|
| 29 |
- **Vocabulary**: Based on Latin script (Creole orthography), preserving diacritics and linguistic nuances.
|
| 30 |
-
- **Voice types**: Made with female synthetics voices.
|
| 31 |
- **Sampling rate**: 16kHz
|
| 32 |
- **Training objective**: Maximize transcription accuracy for everyday Creole speech
|
| 33 |
|
|
@@ -51,7 +57,6 @@ The main objective is to create a **99% accurate Haitian Creole Speech-to-Text m
|
|
| 51 |
|
| 52 |
### ⚠️ Limitations
|
| 53 |
- May struggle with:
|
| 54 |
-
- Heavily code-switched speech (Creole + French/English mixed)
|
| 55 |
- Extremely poor audio quality (e.g., heavy background noise)
|
| 56 |
- Very fast or mumbled speech in some dialects
|
| 57 |
- Long duration audio file
|
|
@@ -64,7 +69,8 @@ The main objective is to create a **99% accurate Haitian Creole Speech-to-Text m
|
|
| 64 |
|
| 65 |
The model was trained on the **creole-text-voice** dataset, which includes:
|
| 66 |
|
| 67 |
-
- **
|
|
|
|
| 68 |
- Annotated, time-aligned text transcripts following standard Creole orthography
|
| 69 |
|
| 70 |
### Sources for next steps:
|
|
@@ -87,8 +93,8 @@ import librosa
|
|
| 87 |
import numpy as np
|
| 88 |
import torch
|
| 89 |
|
| 90 |
-
processor = AutoProcessor.from_pretrained("jsbeaudry/
|
| 91 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained("jsbeaudry/
|
| 92 |
|
| 93 |
def transcript (audio_file_path):
|
| 94 |
|
|
@@ -124,7 +130,7 @@ import gradio as gr
|
|
| 124 |
|
| 125 |
# Load Whisper model
|
| 126 |
print("Loading model...")
|
| 127 |
-
pipe = pipeline(model="jsbeaudry/
|
| 128 |
print("Model loaded successfully.")
|
| 129 |
|
| 130 |
# Transcription function
|
|
@@ -146,14 +152,12 @@ def create_interface():
|
|
| 146 |
with gr.Row():
|
| 147 |
with gr.Column():
|
| 148 |
audio_input = gr.Audio(source="upload", type="filepath", label="🎧 Upload Audio")
|
| 149 |
-
audio_input2 = gr.Audio(source="microphone", type="filepath", label="🎤 Record Audio")
|
| 150 |
with gr.Column():
|
| 151 |
transcribe_button = gr.Button("🔍 Transcribe")
|
| 152 |
output_text = gr.Textbox(label="📝 Transcribed Text", lines=4)
|
| 153 |
|
| 154 |
|
| 155 |
transcribe_button.click(fn=transcribe, inputs=audio_input, outputs=output_text)
|
| 156 |
-
transcribe_button.click(fn=transcribe, inputs=audio_input2, outputs=output_text)
|
| 157 |
|
| 158 |
return demo
|
| 159 |
|
|
@@ -165,15 +169,22 @@ if __name__ == "__main__":
|
|
| 165 |
### Training hyperparameters
|
| 166 |
|
| 167 |
The following hyperparameters were used during training:
|
| 168 |
-
- learning_rate: 1e-
|
| 169 |
-
-
|
| 170 |
-
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
### Framework versions
|
|
@@ -191,8 +202,8 @@ If you use this model, please cite:
|
|
| 191 |
|
| 192 |
```bibtex
|
| 193 |
@misc{whispermediumcreoleoswald2025,
|
| 194 |
-
title={
|
| 195 |
author={Jean sauvenel beaudry},
|
| 196 |
year={2025},
|
| 197 |
howpublished={\url{https://huggingface.co/jsbeaudry}}
|
| 198 |
-
}
|
|
|
|
| 5 |
- transformers
|
| 6 |
- unsloth
|
| 7 |
- whisper
|
| 8 |
+
- creole
|
| 9 |
+
- haiti
|
| 10 |
license: apache-2.0
|
| 11 |
language:
|
| 12 |
- ht
|
| 13 |
+
datasets:
|
| 14 |
+
- jsbeaudry/cmu_haitian_creole_speech
|
| 15 |
+
- jsbeaudry/creole-text-voice
|
| 16 |
+
pipeline_tag: automatic-speech-recognition
|
| 17 |
---
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
+
# oswald-large-v3-turbo-m1
|
| 23 |
|
| 24 |
+
This model is a fine-tuned version of [openai/unsloth/whisper-large-v3-turbo](https://huggingface.co/unsloth/whisper-large-v3-turbo) on the **creole-text-voice** dataset.
|
| 25 |
The main objective is to create a **99% accurate Haitian Creole Speech-to-Text model**, capable of transcribing diverse Haitian voices across accents, regions, and speaking styles.
|
| 26 |
|
| 27 |
---
|
| 28 |
|
| 29 |
## 🧠 Model description
|
| 30 |
|
| 31 |
+
**oswald-large-v3-turbo-m1** is optimized for Haitian Creole automatic speech recognition (ASR). It builds upon the Whisper architecture by OpenAI and adapts it to Haitian Creole through transfer learning and fine-tuning on a high-quality curated dataset containing hours of Haitian Creole audio-text pairs.
|
| 32 |
|
| 33 |
+
- **Architecture**: Whisper Large
|
| 34 |
- **Fine-tuned for**: Haitian Creole (Kreyòl Ayisyen)
|
| 35 |
- **Vocabulary**: Based on Latin script (Creole orthography), preserving diacritics and linguistic nuances.
|
| 36 |
+
- **Voice types**: Made with female and male synthetics and naturals voices.
|
| 37 |
- **Sampling rate**: 16kHz
|
| 38 |
- **Training objective**: Maximize transcription accuracy for everyday Creole speech
|
| 39 |
|
|
|
|
| 57 |
|
| 58 |
### ⚠️ Limitations
|
| 59 |
- May struggle with:
|
|
|
|
| 60 |
- Extremely poor audio quality (e.g., heavy background noise)
|
| 61 |
- Very fast or mumbled speech in some dialects
|
| 62 |
- Long duration audio file
|
|
|
|
| 69 |
|
| 70 |
The model was trained on the **creole-text-voice** dataset, which includes:
|
| 71 |
|
| 72 |
+
- **7 hours** of Haitian Creole Synthetic speech
|
| 73 |
+
- **8 hours** of Haitian Creole Human speech
|
| 74 |
- Annotated, time-aligned text transcripts following standard Creole orthography
|
| 75 |
|
| 76 |
### Sources for next steps:
|
|
|
|
| 93 |
import numpy as np
|
| 94 |
import torch
|
| 95 |
|
| 96 |
+
processor = AutoProcessor.from_pretrained("jsbeaudry/oswald-large-v3-turbo-m1")
|
| 97 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained("jsbeaudry/oswald-large-v3-turbo-m1")
|
| 98 |
|
| 99 |
def transcript (audio_file_path):
|
| 100 |
|
|
|
|
| 130 |
|
| 131 |
# Load Whisper model
|
| 132 |
print("Loading model...")
|
| 133 |
+
pipe = pipeline(model="jsbeaudry/oswald-large-v3-turbo-m1")
|
| 134 |
print("Model loaded successfully.")
|
| 135 |
|
| 136 |
# Transcription function
|
|
|
|
| 152 |
with gr.Row():
|
| 153 |
with gr.Column():
|
| 154 |
audio_input = gr.Audio(source="upload", type="filepath", label="🎧 Upload Audio")
|
|
|
|
| 155 |
with gr.Column():
|
| 156 |
transcribe_button = gr.Button("🔍 Transcribe")
|
| 157 |
output_text = gr.Textbox(label="📝 Transcribed Text", lines=4)
|
| 158 |
|
| 159 |
|
| 160 |
transcribe_button.click(fn=transcribe, inputs=audio_input, outputs=output_text)
|
|
|
|
| 161 |
|
| 162 |
return demo
|
| 163 |
|
|
|
|
| 169 |
### Training hyperparameters
|
| 170 |
|
| 171 |
The following hyperparameters were used during training:
|
| 172 |
+
- learning_rate: 1e-4
|
| 173 |
+
- num_epochs: 6.65
|
| 174 |
+
- hours: 2:52
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
Step Training Loss Validation Loss
|
| 178 |
+
100 0.565400 0.656878
|
| 179 |
+
200 0.481000 0.528320
|
| 180 |
+
300 0.457000 0.460658
|
| 181 |
+
400 0.822300 0.419748
|
| 182 |
+
500 0.298300 0.397042
|
| 183 |
+
.....
|
| 184 |
+
8300 0.049500 0.215643
|
| 185 |
+
8400 0.024700 0.210167
|
| 186 |
+
|
| 187 |
+
|
| 188 |
|
| 189 |
|
| 190 |
### Framework versions
|
|
|
|
| 202 |
|
| 203 |
```bibtex
|
| 204 |
@misc{whispermediumcreoleoswald2025,
|
| 205 |
+
title={oswald large turbo M1},
|
| 206 |
author={Jean sauvenel beaudry},
|
| 207 |
year={2025},
|
| 208 |
howpublished={\url{https://huggingface.co/jsbeaudry}}
|
| 209 |
+
}
|