Model save
Browse files- README.md +68 -0
- all_results.json +8 -0
- generation_config.json +6 -0
- train_results.json +8 -0
- trainer_state.json +102 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-0.5B
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Qwen2.5-0.5B-Open-R1-Code-GRPO
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- grpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Qwen2.5-0.5B-Open-R1-Code-GRPO
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="js2025/Qwen2.5-0.5B-Open-R1-Code-GRPO", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0.dev0
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.4.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite GRPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@article{zhihong2024deepseekmath,
|
49 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
50 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
51 |
+
year = 2024,
|
52 |
+
eprint = {arXiv:2402.03300},
|
53 |
+
}
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Cite TRL as:
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{vonwerra2022trl,
|
61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
63 |
+
year = 2020,
|
64 |
+
journal = {GitHub repository},
|
65 |
+
publisher = {GitHub},
|
66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
67 |
+
}
|
68 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.009309468648439179,
|
4 |
+
"train_runtime": 366.3401,
|
5 |
+
"train_samples": 16,
|
6 |
+
"train_samples_per_second": 0.044,
|
7 |
+
"train_steps_per_second": 0.011
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.49.0"
|
6 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.009309468648439179,
|
4 |
+
"train_runtime": 366.3401,
|
5 |
+
"train_samples": 16,
|
6 |
+
"train_samples_per_second": 0.044,
|
7 |
+
"train_steps_per_second": 0.011
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"clip_ratio": 0.0,
|
13 |
+
"completion_length": 912.75,
|
14 |
+
"epoch": 0.25,
|
15 |
+
"grad_norm": 1.1149588823318481,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 1e-06,
|
18 |
+
"loss": 0.0475,
|
19 |
+
"reward": 0.125,
|
20 |
+
"reward_std": 0.1767766922712326,
|
21 |
+
"rewards/accuracy_reward": 0.125,
|
22 |
+
"rewards/format_reward": 0.0,
|
23 |
+
"rewards/tag_count_reward": 0.0,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"clip_ratio": 0.0,
|
28 |
+
"completion_length": 1019.5,
|
29 |
+
"epoch": 0.5,
|
30 |
+
"grad_norm": 0.8432132005691528,
|
31 |
+
"kl": 0.0,
|
32 |
+
"learning_rate": 7.75e-07,
|
33 |
+
"loss": -0.0102,
|
34 |
+
"reward": 0.125,
|
35 |
+
"reward_std": 0.1767766922712326,
|
36 |
+
"rewards/accuracy_reward": 0.125,
|
37 |
+
"rewards/format_reward": 0.0,
|
38 |
+
"rewards/tag_count_reward": 0.0,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"clip_ratio": 0.0,
|
43 |
+
"completion_length": 578.25,
|
44 |
+
"epoch": 0.75,
|
45 |
+
"grad_norm": 0.027600621804594994,
|
46 |
+
"kl": 0.0020586252212524414,
|
47 |
+
"learning_rate": 3.250000000000001e-07,
|
48 |
+
"loss": 0.0,
|
49 |
+
"reward": 0.0,
|
50 |
+
"reward_std": 0.0,
|
51 |
+
"rewards/accuracy_reward": 0.0,
|
52 |
+
"rewards/format_reward": 0.0,
|
53 |
+
"rewards/tag_count_reward": 0.0,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"clip_ratio": 0.0,
|
58 |
+
"completion_length": 1318.5,
|
59 |
+
"epoch": 1.0,
|
60 |
+
"grad_norm": 0.005318487994372845,
|
61 |
+
"kl": 8.308887481689453e-05,
|
62 |
+
"learning_rate": 1e-07,
|
63 |
+
"loss": 0.0,
|
64 |
+
"reward": 0.0,
|
65 |
+
"reward_std": 0.0,
|
66 |
+
"rewards/accuracy_reward": 0.0,
|
67 |
+
"rewards/format_reward": 0.0,
|
68 |
+
"rewards/tag_count_reward": 0.0,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 1.0,
|
73 |
+
"step": 4,
|
74 |
+
"total_flos": 0.0,
|
75 |
+
"train_loss": 0.009309468648439179,
|
76 |
+
"train_runtime": 366.3401,
|
77 |
+
"train_samples_per_second": 0.044,
|
78 |
+
"train_steps_per_second": 0.011
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"logging_steps": 1,
|
82 |
+
"max_steps": 4,
|
83 |
+
"num_input_tokens_seen": 0,
|
84 |
+
"num_train_epochs": 1,
|
85 |
+
"save_steps": 500,
|
86 |
+
"stateful_callbacks": {
|
87 |
+
"TrainerControl": {
|
88 |
+
"args": {
|
89 |
+
"should_epoch_stop": false,
|
90 |
+
"should_evaluate": false,
|
91 |
+
"should_log": false,
|
92 |
+
"should_save": true,
|
93 |
+
"should_training_stop": true
|
94 |
+
},
|
95 |
+
"attributes": {}
|
96 |
+
}
|
97 |
+
},
|
98 |
+
"total_flos": 0.0,
|
99 |
+
"train_batch_size": 2,
|
100 |
+
"trial_name": null,
|
101 |
+
"trial_params": null
|
102 |
+
}
|