js2025 commited on
Commit
601894f
·
verified ·
1 Parent(s): 8128d0b

Model save

Browse files
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-0.5B
3
+ library_name: transformers
4
+ model_name: Qwen2.5-0.5B-Open-R1-Code-GRPO
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-0.5B-Open-R1-Code-GRPO
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="js2025/Qwen2.5-0.5B-Open-R1-Code-GRPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.4.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.009309468648439179,
4
+ "train_runtime": 366.3401,
5
+ "train_samples": 16,
6
+ "train_samples_per_second": 0.044,
7
+ "train_steps_per_second": 0.011
8
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0"
6
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.009309468648439179,
4
+ "train_runtime": 366.3401,
5
+ "train_samples": 16,
6
+ "train_samples_per_second": 0.044,
7
+ "train_steps_per_second": 0.011
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 912.75,
14
+ "epoch": 0.25,
15
+ "grad_norm": 1.1149588823318481,
16
+ "kl": 0.0,
17
+ "learning_rate": 1e-06,
18
+ "loss": 0.0475,
19
+ "reward": 0.125,
20
+ "reward_std": 0.1767766922712326,
21
+ "rewards/accuracy_reward": 0.125,
22
+ "rewards/format_reward": 0.0,
23
+ "rewards/tag_count_reward": 0.0,
24
+ "step": 1
25
+ },
26
+ {
27
+ "clip_ratio": 0.0,
28
+ "completion_length": 1019.5,
29
+ "epoch": 0.5,
30
+ "grad_norm": 0.8432132005691528,
31
+ "kl": 0.0,
32
+ "learning_rate": 7.75e-07,
33
+ "loss": -0.0102,
34
+ "reward": 0.125,
35
+ "reward_std": 0.1767766922712326,
36
+ "rewards/accuracy_reward": 0.125,
37
+ "rewards/format_reward": 0.0,
38
+ "rewards/tag_count_reward": 0.0,
39
+ "step": 2
40
+ },
41
+ {
42
+ "clip_ratio": 0.0,
43
+ "completion_length": 578.25,
44
+ "epoch": 0.75,
45
+ "grad_norm": 0.027600621804594994,
46
+ "kl": 0.0020586252212524414,
47
+ "learning_rate": 3.250000000000001e-07,
48
+ "loss": 0.0,
49
+ "reward": 0.0,
50
+ "reward_std": 0.0,
51
+ "rewards/accuracy_reward": 0.0,
52
+ "rewards/format_reward": 0.0,
53
+ "rewards/tag_count_reward": 0.0,
54
+ "step": 3
55
+ },
56
+ {
57
+ "clip_ratio": 0.0,
58
+ "completion_length": 1318.5,
59
+ "epoch": 1.0,
60
+ "grad_norm": 0.005318487994372845,
61
+ "kl": 8.308887481689453e-05,
62
+ "learning_rate": 1e-07,
63
+ "loss": 0.0,
64
+ "reward": 0.0,
65
+ "reward_std": 0.0,
66
+ "rewards/accuracy_reward": 0.0,
67
+ "rewards/format_reward": 0.0,
68
+ "rewards/tag_count_reward": 0.0,
69
+ "step": 4
70
+ },
71
+ {
72
+ "epoch": 1.0,
73
+ "step": 4,
74
+ "total_flos": 0.0,
75
+ "train_loss": 0.009309468648439179,
76
+ "train_runtime": 366.3401,
77
+ "train_samples_per_second": 0.044,
78
+ "train_steps_per_second": 0.011
79
+ }
80
+ ],
81
+ "logging_steps": 1,
82
+ "max_steps": 4,
83
+ "num_input_tokens_seen": 0,
84
+ "num_train_epochs": 1,
85
+ "save_steps": 500,
86
+ "stateful_callbacks": {
87
+ "TrainerControl": {
88
+ "args": {
89
+ "should_epoch_stop": false,
90
+ "should_evaluate": false,
91
+ "should_log": false,
92
+ "should_save": true,
93
+ "should_training_stop": true
94
+ },
95
+ "attributes": {}
96
+ }
97
+ },
98
+ "total_flos": 0.0,
99
+ "train_batch_size": 2,
100
+ "trial_name": null,
101
+ "trial_params": null
102
+ }