Upload model
Browse files- README.md +199 -0
- config.json +41 -0
- configuration_vgs.py +66 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +347 -0
- modeling_vgs.py +142 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"VGSModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.05,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_vgs.VGSConfig",
|
| 8 |
+
"AutoModel": "modeling_vgs.VGSModel"
|
| 9 |
+
},
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 1536,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "LABEL_0",
|
| 14 |
+
"1": "LABEL_1",
|
| 15 |
+
"2": "LABEL_2"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 8960,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"LABEL_0": 0,
|
| 21 |
+
"LABEL_1": 1,
|
| 22 |
+
"LABEL_2": 2
|
| 23 |
+
},
|
| 24 |
+
"max_position_embeddings": 131072,
|
| 25 |
+
"max_window_layers": 21,
|
| 26 |
+
"model_type": "vgs",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 28,
|
| 29 |
+
"num_key_value_heads": 2,
|
| 30 |
+
"rms_norm_eps": 1e-06,
|
| 31 |
+
"rope_scaling": null,
|
| 32 |
+
"rope_theta": 10000.0,
|
| 33 |
+
"sliding_window": 4096,
|
| 34 |
+
"tie_word_embeddings": false,
|
| 35 |
+
"torch_dtype": "float32",
|
| 36 |
+
"transformers_version": "4.51.1",
|
| 37 |
+
"use_bias": false,
|
| 38 |
+
"use_cache": false,
|
| 39 |
+
"use_sliding_window": false,
|
| 40 |
+
"vocab_size": 151936
|
| 41 |
+
}
|
configuration_vgs.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
| 2 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 3 |
+
from transformers.utils import logging
|
| 4 |
+
|
| 5 |
+
logger = logging.get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class VGSConfig(Qwen2Config):
|
| 9 |
+
model_type = 'vgs'
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
vocab_size=151936,
|
| 13 |
+
hidden_size=1536,
|
| 14 |
+
intermediate_size=8960,
|
| 15 |
+
num_hidden_layers=28,
|
| 16 |
+
num_attention_heads=12,
|
| 17 |
+
num_key_value_heads=2,
|
| 18 |
+
hidden_act="silu",
|
| 19 |
+
max_position_embeddings=131072,
|
| 20 |
+
initializer_range=0.02,
|
| 21 |
+
rms_norm_eps=1e-6,
|
| 22 |
+
use_cache=False,
|
| 23 |
+
tie_word_embeddings=False,
|
| 24 |
+
rope_theta=10000.0,
|
| 25 |
+
rope_scaling=None,
|
| 26 |
+
use_sliding_window=False,
|
| 27 |
+
sliding_window=4096,
|
| 28 |
+
max_window_layers=21,
|
| 29 |
+
attention_dropout=0.05,
|
| 30 |
+
num_labels=3,
|
| 31 |
+
use_bias=False,
|
| 32 |
+
**kwargs,
|
| 33 |
+
):
|
| 34 |
+
super().__init__(
|
| 35 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 36 |
+
**kwargs,
|
| 37 |
+
)
|
| 38 |
+
self.vocab_size = vocab_size
|
| 39 |
+
self.max_position_embeddings = max_position_embeddings
|
| 40 |
+
self.hidden_size = hidden_size
|
| 41 |
+
self.intermediate_size = intermediate_size
|
| 42 |
+
self.num_hidden_layers = num_hidden_layers
|
| 43 |
+
self.num_attention_heads = num_attention_heads
|
| 44 |
+
self.use_sliding_window = use_sliding_window
|
| 45 |
+
self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
|
| 46 |
+
self.max_window_layers = max_window_layers
|
| 47 |
+
|
| 48 |
+
# for backward compatibility
|
| 49 |
+
if num_key_value_heads is None:
|
| 50 |
+
num_key_value_heads = num_attention_heads
|
| 51 |
+
|
| 52 |
+
self.num_key_value_heads = num_key_value_heads
|
| 53 |
+
self.hidden_act = hidden_act
|
| 54 |
+
self.initializer_range = initializer_range
|
| 55 |
+
self.rms_norm_eps = rms_norm_eps
|
| 56 |
+
self.use_cache = use_cache
|
| 57 |
+
self.rope_theta = rope_theta
|
| 58 |
+
self.rope_scaling = rope_scaling
|
| 59 |
+
self.attention_dropout = attention_dropout
|
| 60 |
+
self.num_labels = num_labels
|
| 61 |
+
self.use_bias = use_bias
|
| 62 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 63 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 64 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 65 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 66 |
+
rope_config_validation(self)
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ca60e461464846af59b13cf61a9948e2183f3bc6952c024506800233cb04109
|
| 3 |
+
size 4996670464
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a573bfd4f91b9d18f9ae5a638123663aaefd8c8ebcaf105493fbac94e565a49
|
| 3 |
+
size 1187680760
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 6184312832
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 261 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 297 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 298 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 299 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 307 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 321 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 323 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 331 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 333 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 335 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"model.norm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"score.0.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"score.2.weight": "model-00002-of-00002.safetensors"
|
| 346 |
+
}
|
| 347 |
+
}
|
modeling_vgs.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from configuration_vgs import VGSConfig
|
| 2 |
+
from transformers import Qwen2PreTrainedModel, Qwen2Model
|
| 3 |
+
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
| 4 |
+
from transformers.cache_utils import Cache
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from typing import List, Optional, Tuple, Union
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class CustomSequenceClassifierOutputWithPast(SequenceClassifierOutputWithPast):
|
| 14 |
+
# Prob of reward being 1
|
| 15 |
+
success_probs: Optional[torch.FloatTensor] = None
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class VGSModel(Qwen2PreTrainedModel):
|
| 19 |
+
config_class = VGSConfig
|
| 20 |
+
def __init__(self, config):
|
| 21 |
+
super().__init__(config)
|
| 22 |
+
num_labels = config.num_labels
|
| 23 |
+
self.model = Qwen2Model(config)
|
| 24 |
+
self.score = nn.Sequential(
|
| 25 |
+
nn.Linear(config.hidden_size, config.hidden_size, bias=config.use_bias),
|
| 26 |
+
nn.ReLU(),
|
| 27 |
+
nn.Linear(config.hidden_size, num_labels, bias=config.use_bias),
|
| 28 |
+
)
|
| 29 |
+
self.p_dropout = config.attention_dropout
|
| 30 |
+
self.score_dropout = nn.Dropout(self.p_dropout)
|
| 31 |
+
self.inference_impl = "naive"
|
| 32 |
+
self.train_bt_model = False
|
| 33 |
+
self.num_labels = num_labels
|
| 34 |
+
|
| 35 |
+
# Initialize weights and apply final processing
|
| 36 |
+
self.post_init()
|
| 37 |
+
|
| 38 |
+
def forward(
|
| 39 |
+
self,
|
| 40 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 41 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 42 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 43 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 44 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 45 |
+
labels: Optional[torch.LongTensor] = None,
|
| 46 |
+
use_cache: Optional[bool] = None,
|
| 47 |
+
output_attentions: Optional[bool] = None,
|
| 48 |
+
output_hidden_states: Optional[bool] = None,
|
| 49 |
+
return_dict: Optional[bool] = None,
|
| 50 |
+
loss_mask: Optional[torch.Tensor] = None,
|
| 51 |
+
continuation_ids: Optional[torch.LongTensor] = None,
|
| 52 |
+
continuation_attention_mask: Optional[torch.Tensor] = None,
|
| 53 |
+
) -> Union[Tuple, CustomSequenceClassifierOutputWithPast]:
|
| 54 |
+
"""
|
| 55 |
+
During training:
|
| 56 |
+
- labels should not be None and have shape: [bs, 1]
|
| 57 |
+
- input_ids: [bs, seqlen]
|
| 58 |
+
- loss_mask [bs, seqlen]
|
| 59 |
+
|
| 60 |
+
During inference:
|
| 61 |
+
labels, loss_mask should be None
|
| 62 |
+
continuation_ids is [bs, N, c_len].
|
| 63 |
+
If input_ids is [bs, seqlen], this is prefill stage.
|
| 64 |
+
Otherwise, input_ids is also [bs, c_len] which contains the chosen continuation from last step. And we update the kv_cache.
|
| 65 |
+
Here, attention_mask should be [bs, q_len] where q_len is seqlen + len of continuations so far.
|
| 66 |
+
"""
|
| 67 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 68 |
+
assert return_dict, "Only return_dict=True is supported."
|
| 69 |
+
is_training = labels is not None
|
| 70 |
+
is_single_eval = continuation_ids is None
|
| 71 |
+
if not is_training: assert not self.training, "Model should not be in training mode during inference."
|
| 72 |
+
|
| 73 |
+
if is_training:
|
| 74 |
+
transformer_outputs = self.model(
|
| 75 |
+
input_ids,
|
| 76 |
+
attention_mask=attention_mask,
|
| 77 |
+
position_ids=position_ids,
|
| 78 |
+
past_key_values=past_key_values,
|
| 79 |
+
inputs_embeds=inputs_embeds,
|
| 80 |
+
use_cache=use_cache,
|
| 81 |
+
output_attentions=output_attentions,
|
| 82 |
+
output_hidden_states=output_hidden_states,
|
| 83 |
+
return_dict=return_dict,
|
| 84 |
+
)
|
| 85 |
+
hidden_states = transformer_outputs[0] # [bs, seqlen, hidden_dim]
|
| 86 |
+
logits = self.score(self.score_dropout(hidden_states)).float() # [bs, seqlen, num_labels]
|
| 87 |
+
bs, seqlen, _ = logits.shape
|
| 88 |
+
if self.train_bt_model:
|
| 89 |
+
assert self.num_labels == 1, f"BT model should have 1 label. Got {self.num_labels}."
|
| 90 |
+
assert bs % 2 == 0, f"Batch size should be even for BT model. Got {bs}."
|
| 91 |
+
logits = logits[:, -1, 0] # [bs, seqlen, 1] -> [bs]
|
| 92 |
+
# bt loss
|
| 93 |
+
assert torch.all(labels[::2] == 1), f"Labels should be 1 for chosen logits. Got {labels[::2]}."
|
| 94 |
+
assert torch.all(labels[1::2] == 0), f"Labels should be 0 for rejected logits. Got {labels[1::2]}."
|
| 95 |
+
chosen_logits = logits[::2] # [bs//2]
|
| 96 |
+
reject_logits = logits[1::2] # [bs//2]
|
| 97 |
+
elemwise_loss = -F.logsigmoid(chosen_logits - reject_logits) # [bs//2]
|
| 98 |
+
loss = elemwise_loss.mean()
|
| 99 |
+
else:
|
| 100 |
+
if self.num_labels == 1:
|
| 101 |
+
# BCE Loss
|
| 102 |
+
labels_expanded = labels.unsqueeze(-1).expand_as(logits)
|
| 103 |
+
elemwise_loss = F.binary_cross_entropy_with_logits(logits, labels_expanded, reduction="none") # [bs, seqlen]
|
| 104 |
+
else:
|
| 105 |
+
# CrossEntropyLoss
|
| 106 |
+
labels_expanded = labels.long().unsqueeze(-1).expand((bs, seqlen)) # [bs, seqlen]
|
| 107 |
+
elemwise_loss = F.cross_entropy(
|
| 108 |
+
logits.transpose(1, 2), # [bs, seqlen, num_labels] -> [bs, num_labels, seqlen]
|
| 109 |
+
labels_expanded, # [bs, seqlen]
|
| 110 |
+
reduction="none",
|
| 111 |
+
)
|
| 112 |
+
# avg over seqlen and bs. do so in a way that prevents nans from division by zero
|
| 113 |
+
mask_sum = loss_mask.sum(1).float()
|
| 114 |
+
safe_denom = torch.where(mask_sum > 0, mask_sum, torch.ones_like(mask_sum))
|
| 115 |
+
loss = torch.where(mask_sum > 0, (elemwise_loss * loss_mask).sum(1) / safe_denom, mask_sum) # [bs]
|
| 116 |
+
loss = loss.mean()
|
| 117 |
+
|
| 118 |
+
return CustomSequenceClassifierOutputWithPast(loss=loss, logits=logits)
|
| 119 |
+
|
| 120 |
+
elif is_single_eval:
|
| 121 |
+
# single eval is also useful for updating kv_cache
|
| 122 |
+
assert continuation_ids is None
|
| 123 |
+
transformer_outputs = self.model(
|
| 124 |
+
input_ids,
|
| 125 |
+
attention_mask=attention_mask,
|
| 126 |
+
past_key_values=past_key_values,
|
| 127 |
+
use_cache=use_cache,
|
| 128 |
+
output_attentions=output_attentions,
|
| 129 |
+
output_hidden_states=output_hidden_states,
|
| 130 |
+
return_dict=return_dict,
|
| 131 |
+
)
|
| 132 |
+
hidden_states = transformer_outputs[0] # [bs, seqlen, hidden_dim]
|
| 133 |
+
logits = self.score(hidden_states).float() # [bs, seqlen, num_labels]
|
| 134 |
+
if logits.shape[-1] > 1:
|
| 135 |
+
# assume 1 is the index/label for success
|
| 136 |
+
success_probs = F.softmax(logits, dim=-1)[:, :, 1] # [bs, seqlen]
|
| 137 |
+
else:
|
| 138 |
+
assert logits.shape[-1] == 1, f"Expected logits to have 1 output, got {logits.shape}."
|
| 139 |
+
success_probs = logits.squeeze(-1).sigmoid() # [bs, seqlen]
|
| 140 |
+
|
| 141 |
+
return CustomSequenceClassifierOutputWithPast(
|
| 142 |
+
logits=logits, success_probs=success_probs, past_key_values=transformer_outputs.past_key_values)
|