Create handler.py
Browse files- handler.py +31 -0
handler.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
6 |
+
def mean_pooling(model_output, attention_mask):
|
7 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
8 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
9 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
10 |
+
|
11 |
+
class EndpointHandler():
|
12 |
+
def __init__(self, path=""):
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
|
14 |
+
self.model = AutoModel.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
|
15 |
+
|
16 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
17 |
+
"""
|
18 |
+
data args:
|
19 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
20 |
+
kwargs
|
21 |
+
Return:
|
22 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
23 |
+
"""
|
24 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
25 |
+
# Compute token embeddings
|
26 |
+
with torch.no_grad():
|
27 |
+
model_output = self.model(**encoded_input)
|
28 |
+
|
29 |
+
# Perform pooling. In this case, max pooling.
|
30 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
31 |
+
return model_output
|