End of training
Browse files- .gitattributes +4 -0
- README.md +22 -0
- README_sdxl.md +201 -0
- dog/alvan-nee-9M0tSjb-cpA-unsplash.jpeg +0 -0
- dog/alvan-nee-Id1DBHv4fbg-unsplash.jpeg +3 -0
- dog/alvan-nee-bQaAJCbNq3g-unsplash.jpeg +3 -0
- dog/alvan-nee-brFsZ7qszSY-unsplash.jpeg +3 -0
- dog/alvan-nee-eoqnr8ikwFE-unsplash.jpeg +3 -0
- feature_extractor/preprocessor_config.json +28 -0
- logs/dreambooth/1691434852.0698752/events.out.tfevents.1691434852.ip-172-31-26-230.295956.1 +3 -0
- logs/dreambooth/1691434852.0710692/hparams.yml +57 -0
- logs/dreambooth/events.out.tfevents.1691434852.ip-172-31-26-230.295956.0 +3 -0
- model_index.json +34 -0
- requirements.txt +6 -0
- requirements_flax.txt +8 -0
- requirements_sdxl.txt +6 -0
- safety_checker/config.json +168 -0
- safety_checker/pytorch_model.bin +3 -0
- scheduler/scheduler_config.json +15 -0
- text_encoder/config.json +25 -0
- text_encoder/pytorch_model.bin +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +33 -0
- tokenizer/vocab.json +0 -0
- train_dreambooth.py +1378 -0
- train_dreambooth_flax.py +709 -0
- train_dreambooth_lora.py +1424 -0
- train_dreambooth_lora_sdxl.py +1368 -0
- unet/config.json +65 -0
- unet/diffusion_pytorch_model.bin +3 -0
- vae/config.json +32 -0
- vae/diffusion_pytorch_model.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
dog/alvan-nee-Id1DBHv4fbg-unsplash.jpeg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
dog/alvan-nee-bQaAJCbNq3g-unsplash.jpeg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
dog/alvan-nee-brFsZ7qszSY-unsplash.jpeg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
dog/alvan-nee-eoqnr8ikwFE-unsplash.jpeg filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: creativeml-openrail-m
|
4 |
+
base_model: CompVis/stable-diffusion-v1-4
|
5 |
+
instance_prompt: a photo of sks dog
|
6 |
+
tags:
|
7 |
+
- stable-diffusion
|
8 |
+
- stable-diffusion-diffusers
|
9 |
+
- text-to-image
|
10 |
+
- diffusers
|
11 |
+
- dreambooth
|
12 |
+
inference: true
|
13 |
+
---
|
14 |
+
|
15 |
+
# DreamBooth - jpawan33/dreambooth
|
16 |
+
|
17 |
+
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
|
18 |
+
You can find some example images in the following.
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
DreamBooth for the text encoder was enabled: False.
|
README_sdxl.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DreamBooth training example for Stable Diffusion XL (SDXL)
|
2 |
+
|
3 |
+
[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few (3~5) images of a subject.
|
4 |
+
|
5 |
+
The `train_dreambooth_lora_sdxl.py` script shows how to implement the training procedure and adapt it for [Stable Diffusion XL](https://huggingface.co/papers/2307.01952).
|
6 |
+
|
7 |
+
> 💡 **Note**: For now, we only allow DreamBooth fine-tuning of the SDXL UNet via LoRA. LoRA is a parameter-efficient fine-tuning technique introduced in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*.
|
8 |
+
|
9 |
+
## Running locally with PyTorch
|
10 |
+
|
11 |
+
### Installing the dependencies
|
12 |
+
|
13 |
+
Before running the scripts, make sure to install the library's training dependencies:
|
14 |
+
|
15 |
+
**Important**
|
16 |
+
|
17 |
+
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
|
18 |
+
|
19 |
+
```bash
|
20 |
+
git clone https://github.com/huggingface/diffusers
|
21 |
+
cd diffusers
|
22 |
+
pip install -e .
|
23 |
+
```
|
24 |
+
|
25 |
+
Then cd in the `examples/dreambooth` folder and run
|
26 |
+
```bash
|
27 |
+
pip install -r requirements_sdxl.txt
|
28 |
+
```
|
29 |
+
|
30 |
+
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
|
31 |
+
|
32 |
+
```bash
|
33 |
+
accelerate config
|
34 |
+
```
|
35 |
+
|
36 |
+
Or for a default accelerate configuration without answering questions about your environment
|
37 |
+
|
38 |
+
```bash
|
39 |
+
accelerate config default
|
40 |
+
```
|
41 |
+
|
42 |
+
Or if your environment doesn't support an interactive shell (e.g., a notebook)
|
43 |
+
|
44 |
+
```python
|
45 |
+
from accelerate.utils import write_basic_config
|
46 |
+
write_basic_config()
|
47 |
+
```
|
48 |
+
|
49 |
+
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
|
50 |
+
|
51 |
+
### Dog toy example
|
52 |
+
|
53 |
+
Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.
|
54 |
+
|
55 |
+
Let's first download it locally:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from huggingface_hub import snapshot_download
|
59 |
+
|
60 |
+
local_dir = "./dog"
|
61 |
+
snapshot_download(
|
62 |
+
"diffusers/dog-example",
|
63 |
+
local_dir=local_dir, repo_type="dataset",
|
64 |
+
ignore_patterns=".gitattributes",
|
65 |
+
)
|
66 |
+
```
|
67 |
+
|
68 |
+
This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform.
|
69 |
+
|
70 |
+
Now, we can launch training using:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
|
74 |
+
export INSTANCE_DIR="dog"
|
75 |
+
export OUTPUT_DIR="lora-trained-xl"
|
76 |
+
|
77 |
+
accelerate launch train_dreambooth_lora_sdxl.py \
|
78 |
+
--pretrained_model_name_or_path=$MODEL_NAME \
|
79 |
+
--instance_data_dir=$INSTANCE_DIR \
|
80 |
+
--output_dir=$OUTPUT_DIR \
|
81 |
+
--mixed_precision="fp16" \
|
82 |
+
--instance_prompt="a photo of sks dog" \
|
83 |
+
--resolution=1024 \
|
84 |
+
--train_batch_size=1 \
|
85 |
+
--gradient_accumulation_steps=4 \
|
86 |
+
--learning_rate=1e-4 \
|
87 |
+
--report_to="wandb" \
|
88 |
+
--lr_scheduler="constant" \
|
89 |
+
--lr_warmup_steps=0 \
|
90 |
+
--max_train_steps=500 \
|
91 |
+
--validation_prompt="A photo of sks dog in a bucket" \
|
92 |
+
--validation_epochs=25 \
|
93 |
+
--seed="0" \
|
94 |
+
--push_to_hub
|
95 |
+
```
|
96 |
+
|
97 |
+
To better track our training experiments, we're using the following flags in the command above:
|
98 |
+
|
99 |
+
* `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
|
100 |
+
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
|
101 |
+
|
102 |
+
Our experiments were conducted on a single 40GB A100 GPU.
|
103 |
+
|
104 |
+
### Dog toy example with < 16GB VRAM
|
105 |
+
|
106 |
+
By making use of [`gradient_checkpointing`](https://pytorch.org/docs/stable/checkpoint.html) (which is natively supported in Diffusers), [`xformers`](https://github.com/facebookresearch/xformers), and [`bitsandbytes`](https://github.com/TimDettmers/bitsandbytes) libraries, you can train SDXL LoRAs with less than 16GB of VRAM by adding the following flags to your accelerate launch command:
|
107 |
+
|
108 |
+
```diff
|
109 |
+
+ --enable_xformers_memory_efficient_attention \
|
110 |
+
+ --gradient_checkpointing \
|
111 |
+
+ --use_8bit_adam \
|
112 |
+
+ --mixed_precision="fp16" \
|
113 |
+
```
|
114 |
+
|
115 |
+
and making sure that you have the following libraries installed:
|
116 |
+
|
117 |
+
```
|
118 |
+
bitsandbytes>=0.40.0
|
119 |
+
xformers>=0.0.20
|
120 |
+
```
|
121 |
+
|
122 |
+
### Inference
|
123 |
+
|
124 |
+
Once training is done, we can perform inference like so:
|
125 |
+
|
126 |
+
```python
|
127 |
+
from huggingface_hub.repocard import RepoCard
|
128 |
+
from diffusers import DiffusionPipeline
|
129 |
+
import torch
|
130 |
+
|
131 |
+
lora_model_id = <"lora-sdxl-dreambooth-id">
|
132 |
+
card = RepoCard.load(lora_model_id)
|
133 |
+
base_model_id = card.data.to_dict()["base_model"]
|
134 |
+
|
135 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
136 |
+
pipe = pipe.to("cuda")
|
137 |
+
pipe.load_lora_weights(lora_model_id)
|
138 |
+
image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0]
|
139 |
+
image.save("sks_dog.png")
|
140 |
+
```
|
141 |
+
|
142 |
+
We can further refine the outputs with the [Refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0):
|
143 |
+
|
144 |
+
```python
|
145 |
+
from huggingface_hub.repocard import RepoCard
|
146 |
+
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline
|
147 |
+
import torch
|
148 |
+
|
149 |
+
lora_model_id = <"lora-sdxl-dreambooth-id">
|
150 |
+
card = RepoCard.load(lora_model_id)
|
151 |
+
base_model_id = card.data.to_dict()["base_model"]
|
152 |
+
|
153 |
+
# Load the base pipeline and load the LoRA parameters into it.
|
154 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
155 |
+
pipe = pipe.to("cuda")
|
156 |
+
pipe.load_lora_weights(lora_model_id)
|
157 |
+
|
158 |
+
# Load the refiner.
|
159 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
160 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
|
161 |
+
)
|
162 |
+
refiner.to("cuda")
|
163 |
+
|
164 |
+
prompt = "A picture of a sks dog in a bucket"
|
165 |
+
generator = torch.Generator("cuda").manual_seed(0)
|
166 |
+
|
167 |
+
# Run inference.
|
168 |
+
image = pipe(prompt=prompt, output_type="latent", generator=generator).images[0]
|
169 |
+
image = refiner(prompt=prompt, image=image[None, :], generator=generator).images[0]
|
170 |
+
image.save("refined_sks_dog.png")
|
171 |
+
```
|
172 |
+
|
173 |
+
Here's a side-by-side comparison of the with and without Refiner pipeline outputs:
|
174 |
+
|
175 |
+
| Without Refiner | With Refiner |
|
176 |
+
|---|---|
|
177 |
+
|  |  |
|
178 |
+
|
179 |
+
### Training with text encoder(s)
|
180 |
+
|
181 |
+
Alongside the UNet, LoRA fine-tuning of the text encoders is also supported. To do so, just specify `--train_text_encoder` while launching training. Please keep the following points in mind:
|
182 |
+
|
183 |
+
* SDXL has two text encoders. So, we fine-tune both using LoRA.
|
184 |
+
* When not fine-tuning the text encoders, we ALWAYS precompute the text embeddings to save memory.
|
185 |
+
|
186 |
+
### Specifying a better VAE
|
187 |
+
|
188 |
+
SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
|
189 |
+
|
190 |
+
## Notes
|
191 |
+
|
192 |
+
In our experiments, we found that SDXL yields good initial results without extensive hyperparameter tuning. For example, without fine-tuning the text encoders and without using prior-preservation, we observed decent results. We didn't explore further hyper-parameter tuning experiments, but we do encourage the community to explore this avenue further and share their results with us 🤗
|
193 |
+
|
194 |
+
## Results
|
195 |
+
|
196 |
+
You can explore the results from a couple of our internal experiments by checking out this link: [https://wandb.ai/sayakpaul/dreambooth-lora-sd-xl](https://wandb.ai/sayakpaul/dreambooth-lora-sd-xl). Specifically, we used the same script with the exact same hyperparameters on the following datasets:
|
197 |
+
|
198 |
+
* [Dogs](https://huggingface.co/datasets/diffusers/dog-example)
|
199 |
+
* [Starbucks logo](https://huggingface.co/datasets/diffusers/starbucks-example)
|
200 |
+
* [Mr. Potato Head](https://huggingface.co/datasets/diffusers/potato-head-example)
|
201 |
+
* [Keramer face](https://huggingface.co/datasets/diffusers/keramer-face-example)
|
dog/alvan-nee-9M0tSjb-cpA-unsplash.jpeg
ADDED
![]() |
dog/alvan-nee-Id1DBHv4fbg-unsplash.jpeg
ADDED
![]() |
Git LFS Details
|
dog/alvan-nee-bQaAJCbNq3g-unsplash.jpeg
ADDED
![]() |
Git LFS Details
|
dog/alvan-nee-brFsZ7qszSY-unsplash.jpeg
ADDED
![]() |
Git LFS Details
|
dog/alvan-nee-eoqnr8ikwFE-unsplash.jpeg
ADDED
![]() |
Git LFS Details
|
feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
12 |
+
"image_mean": [
|
13 |
+
0.48145466,
|
14 |
+
0.4578275,
|
15 |
+
0.40821073
|
16 |
+
],
|
17 |
+
"image_processor_type": "CLIPImageProcessor",
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 224
|
27 |
+
}
|
28 |
+
}
|
logs/dreambooth/1691434852.0698752/events.out.tfevents.1691434852.ip-172-31-26-230.295956.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39c4f3880c40b945e6436e1a05347f8e6cf7907ea0eb3d9f680f028e55efcdfd
|
3 |
+
size 2713
|
logs/dreambooth/1691434852.0710692/hparams.yml
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
adam_beta1: 0.9
|
2 |
+
adam_beta2: 0.999
|
3 |
+
adam_epsilon: 1.0e-08
|
4 |
+
adam_weight_decay: 0.01
|
5 |
+
allow_tf32: false
|
6 |
+
center_crop: false
|
7 |
+
checkpointing_steps: 500
|
8 |
+
checkpoints_total_limit: null
|
9 |
+
class_data_dir: null
|
10 |
+
class_labels_conditioning: null
|
11 |
+
class_prompt: null
|
12 |
+
dataloader_num_workers: 0
|
13 |
+
enable_xformers_memory_efficient_attention: false
|
14 |
+
gradient_accumulation_steps: 1
|
15 |
+
gradient_checkpointing: false
|
16 |
+
hub_model_id: null
|
17 |
+
hub_token: null
|
18 |
+
instance_data_dir: ./dog
|
19 |
+
instance_prompt: a photo of sks dog
|
20 |
+
learning_rate: 5.0e-06
|
21 |
+
local_rank: -1
|
22 |
+
logging_dir: logs
|
23 |
+
lr_num_cycles: 1
|
24 |
+
lr_power: 1.0
|
25 |
+
lr_scheduler: constant
|
26 |
+
lr_warmup_steps: 0
|
27 |
+
max_grad_norm: 1.0
|
28 |
+
max_train_steps: 400
|
29 |
+
mixed_precision: null
|
30 |
+
num_class_images: 100
|
31 |
+
num_train_epochs: 80
|
32 |
+
num_validation_images: 4
|
33 |
+
offset_noise: false
|
34 |
+
output_dir: /home/ubuntu/StableDiffusion/diffusers/examples/dreambooth
|
35 |
+
pre_compute_text_embeddings: false
|
36 |
+
pretrained_model_name_or_path: CompVis/stable-diffusion-v1-4
|
37 |
+
prior_generation_precision: null
|
38 |
+
prior_loss_weight: 1.0
|
39 |
+
push_to_hub: true
|
40 |
+
report_to: tensorboard
|
41 |
+
resolution: 512
|
42 |
+
resume_from_checkpoint: null
|
43 |
+
revision: null
|
44 |
+
sample_batch_size: 4
|
45 |
+
scale_lr: false
|
46 |
+
seed: null
|
47 |
+
set_grads_to_none: false
|
48 |
+
skip_save_text_encoder: false
|
49 |
+
text_encoder_use_attention_mask: false
|
50 |
+
tokenizer_max_length: null
|
51 |
+
tokenizer_name: null
|
52 |
+
train_batch_size: 1
|
53 |
+
train_text_encoder: false
|
54 |
+
use_8bit_adam: false
|
55 |
+
validation_prompt: null
|
56 |
+
validation_steps: 100
|
57 |
+
with_prior_preservation: false
|
logs/dreambooth/events.out.tfevents.1691434852.ip-172-31-26-230.295956.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8412a30292b7870337ddccfca4b08c25f86efbee7d031cabb9c0bd4d992edf1
|
3 |
+
size 33434
|
model_index.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "CompVis/stable-diffusion-v1-4",
|
5 |
+
"feature_extractor": [
|
6 |
+
"transformers",
|
7 |
+
"CLIPImageProcessor"
|
8 |
+
],
|
9 |
+
"requires_safety_checker": true,
|
10 |
+
"safety_checker": [
|
11 |
+
"stable_diffusion",
|
12 |
+
"StableDiffusionSafetyChecker"
|
13 |
+
],
|
14 |
+
"scheduler": [
|
15 |
+
"diffusers",
|
16 |
+
"PNDMScheduler"
|
17 |
+
],
|
18 |
+
"text_encoder": [
|
19 |
+
"transformers",
|
20 |
+
"CLIPTextModel"
|
21 |
+
],
|
22 |
+
"tokenizer": [
|
23 |
+
"transformers",
|
24 |
+
"CLIPTokenizer"
|
25 |
+
],
|
26 |
+
"unet": [
|
27 |
+
"diffusers",
|
28 |
+
"UNet2DConditionModel"
|
29 |
+
],
|
30 |
+
"vae": [
|
31 |
+
"diffusers",
|
32 |
+
"AutoencoderKL"
|
33 |
+
]
|
34 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate>=0.16.0
|
2 |
+
torchvision
|
3 |
+
transformers>=4.25.1
|
4 |
+
ftfy
|
5 |
+
tensorboard
|
6 |
+
Jinja2
|
requirements_flax.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.25.1
|
2 |
+
flax
|
3 |
+
optax
|
4 |
+
torch
|
5 |
+
torchvision
|
6 |
+
ftfy
|
7 |
+
tensorboard
|
8 |
+
Jinja2
|
requirements_sdxl.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate>=0.16.0
|
2 |
+
torchvision
|
3 |
+
transformers>=4.25.1
|
4 |
+
ftfy
|
5 |
+
tensorboard
|
6 |
+
Jinja2
|
safety_checker/config.json
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "b95be7d6f134c3a9e62ee616f310733567f069ce",
|
3 |
+
"_name_or_path": "/home/ubuntu/.cache/huggingface/hub/models--CompVis--stable-diffusion-v1-4/snapshots/b95be7d6f134c3a9e62ee616f310733567f069ce/safety_checker",
|
4 |
+
"architectures": [
|
5 |
+
"StableDiffusionSafetyChecker"
|
6 |
+
],
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"logit_scale_init_value": 2.6592,
|
9 |
+
"model_type": "clip",
|
10 |
+
"projection_dim": 768,
|
11 |
+
"text_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"attention_dropout": 0.0,
|
16 |
+
"bad_words_ids": null,
|
17 |
+
"begin_suppress_tokens": null,
|
18 |
+
"bos_token_id": 49406,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"decoder_start_token_id": null,
|
22 |
+
"diversity_penalty": 0.0,
|
23 |
+
"do_sample": false,
|
24 |
+
"dropout": 0.0,
|
25 |
+
"early_stopping": false,
|
26 |
+
"encoder_no_repeat_ngram_size": 0,
|
27 |
+
"eos_token_id": 49407,
|
28 |
+
"exponential_decay_length_penalty": null,
|
29 |
+
"finetuning_task": null,
|
30 |
+
"forced_bos_token_id": null,
|
31 |
+
"forced_eos_token_id": null,
|
32 |
+
"hidden_act": "quick_gelu",
|
33 |
+
"hidden_size": 768,
|
34 |
+
"id2label": {
|
35 |
+
"0": "LABEL_0",
|
36 |
+
"1": "LABEL_1"
|
37 |
+
},
|
38 |
+
"initializer_factor": 1.0,
|
39 |
+
"initializer_range": 0.02,
|
40 |
+
"intermediate_size": 3072,
|
41 |
+
"is_decoder": false,
|
42 |
+
"is_encoder_decoder": false,
|
43 |
+
"label2id": {
|
44 |
+
"LABEL_0": 0,
|
45 |
+
"LABEL_1": 1
|
46 |
+
},
|
47 |
+
"layer_norm_eps": 1e-05,
|
48 |
+
"length_penalty": 1.0,
|
49 |
+
"max_length": 20,
|
50 |
+
"max_position_embeddings": 77,
|
51 |
+
"min_length": 0,
|
52 |
+
"model_type": "clip_text_model",
|
53 |
+
"no_repeat_ngram_size": 0,
|
54 |
+
"num_attention_heads": 12,
|
55 |
+
"num_beam_groups": 1,
|
56 |
+
"num_beams": 1,
|
57 |
+
"num_hidden_layers": 12,
|
58 |
+
"num_return_sequences": 1,
|
59 |
+
"output_attentions": false,
|
60 |
+
"output_hidden_states": false,
|
61 |
+
"output_scores": false,
|
62 |
+
"pad_token_id": 1,
|
63 |
+
"prefix": null,
|
64 |
+
"problem_type": null,
|
65 |
+
"projection_dim": 512,
|
66 |
+
"pruned_heads": {},
|
67 |
+
"remove_invalid_values": false,
|
68 |
+
"repetition_penalty": 1.0,
|
69 |
+
"return_dict": true,
|
70 |
+
"return_dict_in_generate": false,
|
71 |
+
"sep_token_id": null,
|
72 |
+
"suppress_tokens": null,
|
73 |
+
"task_specific_params": null,
|
74 |
+
"temperature": 1.0,
|
75 |
+
"tf_legacy_loss": false,
|
76 |
+
"tie_encoder_decoder": false,
|
77 |
+
"tie_word_embeddings": true,
|
78 |
+
"tokenizer_class": null,
|
79 |
+
"top_k": 50,
|
80 |
+
"top_p": 1.0,
|
81 |
+
"torch_dtype": null,
|
82 |
+
"torchscript": false,
|
83 |
+
"transformers_version": "4.31.0",
|
84 |
+
"typical_p": 1.0,
|
85 |
+
"use_bfloat16": false,
|
86 |
+
"vocab_size": 49408
|
87 |
+
},
|
88 |
+
"torch_dtype": "float32",
|
89 |
+
"transformers_version": null,
|
90 |
+
"vision_config": {
|
91 |
+
"_name_or_path": "",
|
92 |
+
"add_cross_attention": false,
|
93 |
+
"architectures": null,
|
94 |
+
"attention_dropout": 0.0,
|
95 |
+
"bad_words_ids": null,
|
96 |
+
"begin_suppress_tokens": null,
|
97 |
+
"bos_token_id": null,
|
98 |
+
"chunk_size_feed_forward": 0,
|
99 |
+
"cross_attention_hidden_size": null,
|
100 |
+
"decoder_start_token_id": null,
|
101 |
+
"diversity_penalty": 0.0,
|
102 |
+
"do_sample": false,
|
103 |
+
"dropout": 0.0,
|
104 |
+
"early_stopping": false,
|
105 |
+
"encoder_no_repeat_ngram_size": 0,
|
106 |
+
"eos_token_id": null,
|
107 |
+
"exponential_decay_length_penalty": null,
|
108 |
+
"finetuning_task": null,
|
109 |
+
"forced_bos_token_id": null,
|
110 |
+
"forced_eos_token_id": null,
|
111 |
+
"hidden_act": "quick_gelu",
|
112 |
+
"hidden_size": 1024,
|
113 |
+
"id2label": {
|
114 |
+
"0": "LABEL_0",
|
115 |
+
"1": "LABEL_1"
|
116 |
+
},
|
117 |
+
"image_size": 224,
|
118 |
+
"initializer_factor": 1.0,
|
119 |
+
"initializer_range": 0.02,
|
120 |
+
"intermediate_size": 4096,
|
121 |
+
"is_decoder": false,
|
122 |
+
"is_encoder_decoder": false,
|
123 |
+
"label2id": {
|
124 |
+
"LABEL_0": 0,
|
125 |
+
"LABEL_1": 1
|
126 |
+
},
|
127 |
+
"layer_norm_eps": 1e-05,
|
128 |
+
"length_penalty": 1.0,
|
129 |
+
"max_length": 20,
|
130 |
+
"min_length": 0,
|
131 |
+
"model_type": "clip_vision_model",
|
132 |
+
"no_repeat_ngram_size": 0,
|
133 |
+
"num_attention_heads": 16,
|
134 |
+
"num_beam_groups": 1,
|
135 |
+
"num_beams": 1,
|
136 |
+
"num_channels": 3,
|
137 |
+
"num_hidden_layers": 24,
|
138 |
+
"num_return_sequences": 1,
|
139 |
+
"output_attentions": false,
|
140 |
+
"output_hidden_states": false,
|
141 |
+
"output_scores": false,
|
142 |
+
"pad_token_id": null,
|
143 |
+
"patch_size": 14,
|
144 |
+
"prefix": null,
|
145 |
+
"problem_type": null,
|
146 |
+
"projection_dim": 512,
|
147 |
+
"pruned_heads": {},
|
148 |
+
"remove_invalid_values": false,
|
149 |
+
"repetition_penalty": 1.0,
|
150 |
+
"return_dict": true,
|
151 |
+
"return_dict_in_generate": false,
|
152 |
+
"sep_token_id": null,
|
153 |
+
"suppress_tokens": null,
|
154 |
+
"task_specific_params": null,
|
155 |
+
"temperature": 1.0,
|
156 |
+
"tf_legacy_loss": false,
|
157 |
+
"tie_encoder_decoder": false,
|
158 |
+
"tie_word_embeddings": true,
|
159 |
+
"tokenizer_class": null,
|
160 |
+
"top_k": 50,
|
161 |
+
"top_p": 1.0,
|
162 |
+
"torch_dtype": null,
|
163 |
+
"torchscript": false,
|
164 |
+
"transformers_version": "4.31.0",
|
165 |
+
"typical_p": 1.0,
|
166 |
+
"use_bfloat16": false
|
167 |
+
}
|
168 |
+
}
|
safety_checker/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753acd54aa6d288d6c0ce9d51468eb28f495fcbaacf0edf755fa5fc7ce678cd9
|
3 |
+
size 1216062333
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "PNDMScheduler",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "epsilon",
|
10 |
+
"set_alpha_to_one": false,
|
11 |
+
"skip_prk_steps": true,
|
12 |
+
"steps_offset": 1,
|
13 |
+
"timestep_spacing": "leading",
|
14 |
+
"trained_betas": null
|
15 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "CompVis/stable-diffusion-v1-4",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 512,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.31.0",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b020851da42091416889fa03bf3e527e9bc8a7f0b1164147ce06536a5c22494c
|
3 |
+
size 246187869
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 77,
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"tokenizer_class": "CLIPTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train_dreambooth.py
ADDED
@@ -0,0 +1,1378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import copy
|
18 |
+
import gc
|
19 |
+
import hashlib
|
20 |
+
import itertools
|
21 |
+
import logging
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import shutil
|
25 |
+
import warnings
|
26 |
+
from pathlib import Path
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
import torch.nn.functional as F
|
31 |
+
import torch.utils.checkpoint
|
32 |
+
import transformers
|
33 |
+
from accelerate import Accelerator
|
34 |
+
from accelerate.logging import get_logger
|
35 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
36 |
+
from huggingface_hub import create_repo, model_info, upload_folder
|
37 |
+
from packaging import version
|
38 |
+
from PIL import Image
|
39 |
+
from PIL.ImageOps import exif_transpose
|
40 |
+
from torch.utils.data import Dataset
|
41 |
+
from torchvision import transforms
|
42 |
+
from tqdm.auto import tqdm
|
43 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
44 |
+
|
45 |
+
import diffusers
|
46 |
+
from diffusers import (
|
47 |
+
AutoencoderKL,
|
48 |
+
DDPMScheduler,
|
49 |
+
DiffusionPipeline,
|
50 |
+
DPMSolverMultistepScheduler,
|
51 |
+
StableDiffusionPipeline,
|
52 |
+
UNet2DConditionModel,
|
53 |
+
)
|
54 |
+
from diffusers.optimization import get_scheduler
|
55 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
56 |
+
from diffusers.utils.import_utils import is_xformers_available
|
57 |
+
|
58 |
+
|
59 |
+
if is_wandb_available():
|
60 |
+
import wandb
|
61 |
+
|
62 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
63 |
+
check_min_version("0.20.0.dev0")
|
64 |
+
|
65 |
+
logger = get_logger(__name__)
|
66 |
+
|
67 |
+
|
68 |
+
def save_model_card(
|
69 |
+
repo_id: str,
|
70 |
+
images=None,
|
71 |
+
base_model=str,
|
72 |
+
train_text_encoder=False,
|
73 |
+
prompt=str,
|
74 |
+
repo_folder=None,
|
75 |
+
pipeline: DiffusionPipeline = None,
|
76 |
+
):
|
77 |
+
img_str = ""
|
78 |
+
for i, image in enumerate(images):
|
79 |
+
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
80 |
+
img_str += f"\n"
|
81 |
+
|
82 |
+
yaml = f"""
|
83 |
+
---
|
84 |
+
license: creativeml-openrail-m
|
85 |
+
base_model: {base_model}
|
86 |
+
instance_prompt: {prompt}
|
87 |
+
tags:
|
88 |
+
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
|
89 |
+
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
|
90 |
+
- text-to-image
|
91 |
+
- diffusers
|
92 |
+
- dreambooth
|
93 |
+
inference: true
|
94 |
+
---
|
95 |
+
"""
|
96 |
+
model_card = f"""
|
97 |
+
# DreamBooth - {repo_id}
|
98 |
+
|
99 |
+
This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
|
100 |
+
You can find some example images in the following. \n
|
101 |
+
{img_str}
|
102 |
+
|
103 |
+
DreamBooth for the text encoder was enabled: {train_text_encoder}.
|
104 |
+
"""
|
105 |
+
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
106 |
+
f.write(yaml + model_card)
|
107 |
+
|
108 |
+
|
109 |
+
def log_validation(
|
110 |
+
text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch, prompt_embeds, negative_prompt_embeds
|
111 |
+
):
|
112 |
+
logger.info(
|
113 |
+
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
114 |
+
f" {args.validation_prompt}."
|
115 |
+
)
|
116 |
+
|
117 |
+
pipeline_args = {}
|
118 |
+
|
119 |
+
if vae is not None:
|
120 |
+
pipeline_args["vae"] = vae
|
121 |
+
|
122 |
+
if text_encoder is not None:
|
123 |
+
text_encoder = accelerator.unwrap_model(text_encoder)
|
124 |
+
|
125 |
+
# create pipeline (note: unet and vae are loaded again in float32)
|
126 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
127 |
+
args.pretrained_model_name_or_path,
|
128 |
+
tokenizer=tokenizer,
|
129 |
+
text_encoder=text_encoder,
|
130 |
+
unet=accelerator.unwrap_model(unet),
|
131 |
+
revision=args.revision,
|
132 |
+
torch_dtype=weight_dtype,
|
133 |
+
**pipeline_args,
|
134 |
+
)
|
135 |
+
|
136 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
137 |
+
scheduler_args = {}
|
138 |
+
|
139 |
+
if "variance_type" in pipeline.scheduler.config:
|
140 |
+
variance_type = pipeline.scheduler.config.variance_type
|
141 |
+
|
142 |
+
if variance_type in ["learned", "learned_range"]:
|
143 |
+
variance_type = "fixed_small"
|
144 |
+
|
145 |
+
scheduler_args["variance_type"] = variance_type
|
146 |
+
|
147 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
|
148 |
+
pipeline = pipeline.to(accelerator.device)
|
149 |
+
pipeline.set_progress_bar_config(disable=True)
|
150 |
+
|
151 |
+
if args.pre_compute_text_embeddings:
|
152 |
+
pipeline_args = {
|
153 |
+
"prompt_embeds": prompt_embeds,
|
154 |
+
"negative_prompt_embeds": negative_prompt_embeds,
|
155 |
+
}
|
156 |
+
else:
|
157 |
+
pipeline_args = {"prompt": args.validation_prompt}
|
158 |
+
|
159 |
+
# run inference
|
160 |
+
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
161 |
+
images = []
|
162 |
+
if args.validation_images is None:
|
163 |
+
for _ in range(args.num_validation_images):
|
164 |
+
with torch.autocast("cuda"):
|
165 |
+
image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
|
166 |
+
images.append(image)
|
167 |
+
else:
|
168 |
+
for image in args.validation_images:
|
169 |
+
image = Image.open(image)
|
170 |
+
image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
|
171 |
+
images.append(image)
|
172 |
+
|
173 |
+
for tracker in accelerator.trackers:
|
174 |
+
if tracker.name == "tensorboard":
|
175 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
176 |
+
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
177 |
+
if tracker.name == "wandb":
|
178 |
+
tracker.log(
|
179 |
+
{
|
180 |
+
"validation": [
|
181 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
|
182 |
+
]
|
183 |
+
}
|
184 |
+
)
|
185 |
+
|
186 |
+
del pipeline
|
187 |
+
torch.cuda.empty_cache()
|
188 |
+
|
189 |
+
return images
|
190 |
+
|
191 |
+
|
192 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
193 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
194 |
+
pretrained_model_name_or_path,
|
195 |
+
subfolder="text_encoder",
|
196 |
+
revision=revision,
|
197 |
+
)
|
198 |
+
model_class = text_encoder_config.architectures[0]
|
199 |
+
|
200 |
+
if model_class == "CLIPTextModel":
|
201 |
+
from transformers import CLIPTextModel
|
202 |
+
|
203 |
+
return CLIPTextModel
|
204 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
205 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
206 |
+
|
207 |
+
return RobertaSeriesModelWithTransformation
|
208 |
+
elif model_class == "T5EncoderModel":
|
209 |
+
from transformers import T5EncoderModel
|
210 |
+
|
211 |
+
return T5EncoderModel
|
212 |
+
else:
|
213 |
+
raise ValueError(f"{model_class} is not supported.")
|
214 |
+
|
215 |
+
|
216 |
+
def parse_args(input_args=None):
|
217 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
218 |
+
parser.add_argument(
|
219 |
+
"--pretrained_model_name_or_path",
|
220 |
+
type=str,
|
221 |
+
default=None,
|
222 |
+
required=True,
|
223 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--revision",
|
227 |
+
type=str,
|
228 |
+
default=None,
|
229 |
+
required=False,
|
230 |
+
help=(
|
231 |
+
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
|
232 |
+
" float32 precision."
|
233 |
+
),
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--tokenizer_name",
|
237 |
+
type=str,
|
238 |
+
default=None,
|
239 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
240 |
+
)
|
241 |
+
parser.add_argument(
|
242 |
+
"--instance_data_dir",
|
243 |
+
type=str,
|
244 |
+
default=None,
|
245 |
+
required=True,
|
246 |
+
help="A folder containing the training data of instance images.",
|
247 |
+
)
|
248 |
+
parser.add_argument(
|
249 |
+
"--class_data_dir",
|
250 |
+
type=str,
|
251 |
+
default=None,
|
252 |
+
required=False,
|
253 |
+
help="A folder containing the training data of class images.",
|
254 |
+
)
|
255 |
+
parser.add_argument(
|
256 |
+
"--instance_prompt",
|
257 |
+
type=str,
|
258 |
+
default=None,
|
259 |
+
required=True,
|
260 |
+
help="The prompt with identifier specifying the instance",
|
261 |
+
)
|
262 |
+
parser.add_argument(
|
263 |
+
"--class_prompt",
|
264 |
+
type=str,
|
265 |
+
default=None,
|
266 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
267 |
+
)
|
268 |
+
parser.add_argument(
|
269 |
+
"--with_prior_preservation",
|
270 |
+
default=False,
|
271 |
+
action="store_true",
|
272 |
+
help="Flag to add prior preservation loss.",
|
273 |
+
)
|
274 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
275 |
+
parser.add_argument(
|
276 |
+
"--num_class_images",
|
277 |
+
type=int,
|
278 |
+
default=100,
|
279 |
+
help=(
|
280 |
+
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
281 |
+
" class_data_dir, additional images will be sampled with class_prompt."
|
282 |
+
),
|
283 |
+
)
|
284 |
+
parser.add_argument(
|
285 |
+
"--output_dir",
|
286 |
+
type=str,
|
287 |
+
default="text-inversion-model",
|
288 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
289 |
+
)
|
290 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
291 |
+
parser.add_argument(
|
292 |
+
"--resolution",
|
293 |
+
type=int,
|
294 |
+
default=512,
|
295 |
+
help=(
|
296 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
297 |
+
" resolution"
|
298 |
+
),
|
299 |
+
)
|
300 |
+
parser.add_argument(
|
301 |
+
"--center_crop",
|
302 |
+
default=False,
|
303 |
+
action="store_true",
|
304 |
+
help=(
|
305 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
306 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
307 |
+
),
|
308 |
+
)
|
309 |
+
parser.add_argument(
|
310 |
+
"--train_text_encoder",
|
311 |
+
action="store_true",
|
312 |
+
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
|
313 |
+
)
|
314 |
+
parser.add_argument(
|
315 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
316 |
+
)
|
317 |
+
parser.add_argument(
|
318 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
319 |
+
)
|
320 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
321 |
+
parser.add_argument(
|
322 |
+
"--max_train_steps",
|
323 |
+
type=int,
|
324 |
+
default=None,
|
325 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--checkpointing_steps",
|
329 |
+
type=int,
|
330 |
+
default=500,
|
331 |
+
help=(
|
332 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
333 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
334 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
335 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
336 |
+
"instructions."
|
337 |
+
),
|
338 |
+
)
|
339 |
+
parser.add_argument(
|
340 |
+
"--checkpoints_total_limit",
|
341 |
+
type=int,
|
342 |
+
default=None,
|
343 |
+
help=(
|
344 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
345 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
346 |
+
" for more details"
|
347 |
+
),
|
348 |
+
)
|
349 |
+
parser.add_argument(
|
350 |
+
"--resume_from_checkpoint",
|
351 |
+
type=str,
|
352 |
+
default=None,
|
353 |
+
help=(
|
354 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
355 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
356 |
+
),
|
357 |
+
)
|
358 |
+
parser.add_argument(
|
359 |
+
"--gradient_accumulation_steps",
|
360 |
+
type=int,
|
361 |
+
default=1,
|
362 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
363 |
+
)
|
364 |
+
parser.add_argument(
|
365 |
+
"--gradient_checkpointing",
|
366 |
+
action="store_true",
|
367 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
368 |
+
)
|
369 |
+
parser.add_argument(
|
370 |
+
"--learning_rate",
|
371 |
+
type=float,
|
372 |
+
default=5e-6,
|
373 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
374 |
+
)
|
375 |
+
parser.add_argument(
|
376 |
+
"--scale_lr",
|
377 |
+
action="store_true",
|
378 |
+
default=False,
|
379 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
380 |
+
)
|
381 |
+
parser.add_argument(
|
382 |
+
"--lr_scheduler",
|
383 |
+
type=str,
|
384 |
+
default="constant",
|
385 |
+
help=(
|
386 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
387 |
+
' "constant", "constant_with_warmup"]'
|
388 |
+
),
|
389 |
+
)
|
390 |
+
parser.add_argument(
|
391 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
392 |
+
)
|
393 |
+
parser.add_argument(
|
394 |
+
"--lr_num_cycles",
|
395 |
+
type=int,
|
396 |
+
default=1,
|
397 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
398 |
+
)
|
399 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
400 |
+
parser.add_argument(
|
401 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
402 |
+
)
|
403 |
+
parser.add_argument(
|
404 |
+
"--dataloader_num_workers",
|
405 |
+
type=int,
|
406 |
+
default=0,
|
407 |
+
help=(
|
408 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
409 |
+
),
|
410 |
+
)
|
411 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
412 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
413 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
414 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
415 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
416 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
417 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
418 |
+
parser.add_argument(
|
419 |
+
"--hub_model_id",
|
420 |
+
type=str,
|
421 |
+
default=None,
|
422 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
423 |
+
)
|
424 |
+
parser.add_argument(
|
425 |
+
"--logging_dir",
|
426 |
+
type=str,
|
427 |
+
default="logs",
|
428 |
+
help=(
|
429 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
430 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
431 |
+
),
|
432 |
+
)
|
433 |
+
parser.add_argument(
|
434 |
+
"--allow_tf32",
|
435 |
+
action="store_true",
|
436 |
+
help=(
|
437 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
438 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
439 |
+
),
|
440 |
+
)
|
441 |
+
parser.add_argument(
|
442 |
+
"--report_to",
|
443 |
+
type=str,
|
444 |
+
default="tensorboard",
|
445 |
+
help=(
|
446 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
447 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
448 |
+
),
|
449 |
+
)
|
450 |
+
parser.add_argument(
|
451 |
+
"--validation_prompt",
|
452 |
+
type=str,
|
453 |
+
default=None,
|
454 |
+
help="A prompt that is used during validation to verify that the model is learning.",
|
455 |
+
)
|
456 |
+
parser.add_argument(
|
457 |
+
"--num_validation_images",
|
458 |
+
type=int,
|
459 |
+
default=4,
|
460 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
461 |
+
)
|
462 |
+
parser.add_argument(
|
463 |
+
"--validation_steps",
|
464 |
+
type=int,
|
465 |
+
default=100,
|
466 |
+
help=(
|
467 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
468 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
469 |
+
" and logging the images."
|
470 |
+
),
|
471 |
+
)
|
472 |
+
parser.add_argument(
|
473 |
+
"--mixed_precision",
|
474 |
+
type=str,
|
475 |
+
default=None,
|
476 |
+
choices=["no", "fp16", "bf16"],
|
477 |
+
help=(
|
478 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
479 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
480 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
481 |
+
),
|
482 |
+
)
|
483 |
+
parser.add_argument(
|
484 |
+
"--prior_generation_precision",
|
485 |
+
type=str,
|
486 |
+
default=None,
|
487 |
+
choices=["no", "fp32", "fp16", "bf16"],
|
488 |
+
help=(
|
489 |
+
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
490 |
+
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
491 |
+
),
|
492 |
+
)
|
493 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
494 |
+
parser.add_argument(
|
495 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
496 |
+
)
|
497 |
+
parser.add_argument(
|
498 |
+
"--set_grads_to_none",
|
499 |
+
action="store_true",
|
500 |
+
help=(
|
501 |
+
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
|
502 |
+
" behaviors, so disable this argument if it causes any problems. More info:"
|
503 |
+
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
|
504 |
+
),
|
505 |
+
)
|
506 |
+
|
507 |
+
parser.add_argument(
|
508 |
+
"--offset_noise",
|
509 |
+
action="store_true",
|
510 |
+
default=False,
|
511 |
+
help=(
|
512 |
+
"Fine-tuning against a modified noise"
|
513 |
+
" See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
|
514 |
+
),
|
515 |
+
)
|
516 |
+
parser.add_argument(
|
517 |
+
"--pre_compute_text_embeddings",
|
518 |
+
action="store_true",
|
519 |
+
help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
|
520 |
+
)
|
521 |
+
parser.add_argument(
|
522 |
+
"--tokenizer_max_length",
|
523 |
+
type=int,
|
524 |
+
default=None,
|
525 |
+
required=False,
|
526 |
+
help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
|
527 |
+
)
|
528 |
+
parser.add_argument(
|
529 |
+
"--text_encoder_use_attention_mask",
|
530 |
+
action="store_true",
|
531 |
+
required=False,
|
532 |
+
help="Whether to use attention mask for the text encoder",
|
533 |
+
)
|
534 |
+
parser.add_argument(
|
535 |
+
"--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
|
536 |
+
)
|
537 |
+
parser.add_argument(
|
538 |
+
"--validation_images",
|
539 |
+
required=False,
|
540 |
+
default=None,
|
541 |
+
nargs="+",
|
542 |
+
help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
|
543 |
+
)
|
544 |
+
parser.add_argument(
|
545 |
+
"--class_labels_conditioning",
|
546 |
+
required=False,
|
547 |
+
default=None,
|
548 |
+
help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
|
549 |
+
)
|
550 |
+
|
551 |
+
if input_args is not None:
|
552 |
+
args = parser.parse_args(input_args)
|
553 |
+
else:
|
554 |
+
args = parser.parse_args()
|
555 |
+
|
556 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
557 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
558 |
+
args.local_rank = env_local_rank
|
559 |
+
|
560 |
+
if args.with_prior_preservation:
|
561 |
+
if args.class_data_dir is None:
|
562 |
+
raise ValueError("You must specify a data directory for class images.")
|
563 |
+
if args.class_prompt is None:
|
564 |
+
raise ValueError("You must specify prompt for class images.")
|
565 |
+
else:
|
566 |
+
# logger is not available yet
|
567 |
+
if args.class_data_dir is not None:
|
568 |
+
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
569 |
+
if args.class_prompt is not None:
|
570 |
+
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
571 |
+
|
572 |
+
if args.train_text_encoder and args.pre_compute_text_embeddings:
|
573 |
+
raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")
|
574 |
+
|
575 |
+
return args
|
576 |
+
|
577 |
+
|
578 |
+
class DreamBoothDataset(Dataset):
|
579 |
+
"""
|
580 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
581 |
+
It pre-processes the images and the tokenizes prompts.
|
582 |
+
"""
|
583 |
+
|
584 |
+
def __init__(
|
585 |
+
self,
|
586 |
+
instance_data_root,
|
587 |
+
instance_prompt,
|
588 |
+
tokenizer,
|
589 |
+
class_data_root=None,
|
590 |
+
class_prompt=None,
|
591 |
+
class_num=None,
|
592 |
+
size=512,
|
593 |
+
center_crop=False,
|
594 |
+
encoder_hidden_states=None,
|
595 |
+
class_prompt_encoder_hidden_states=None,
|
596 |
+
tokenizer_max_length=None,
|
597 |
+
):
|
598 |
+
self.size = size
|
599 |
+
self.center_crop = center_crop
|
600 |
+
self.tokenizer = tokenizer
|
601 |
+
self.encoder_hidden_states = encoder_hidden_states
|
602 |
+
self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
|
603 |
+
self.tokenizer_max_length = tokenizer_max_length
|
604 |
+
|
605 |
+
self.instance_data_root = Path(instance_data_root)
|
606 |
+
if not self.instance_data_root.exists():
|
607 |
+
raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
|
608 |
+
|
609 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
610 |
+
self.num_instance_images = len(self.instance_images_path)
|
611 |
+
self.instance_prompt = instance_prompt
|
612 |
+
self._length = self.num_instance_images
|
613 |
+
|
614 |
+
if class_data_root is not None:
|
615 |
+
self.class_data_root = Path(class_data_root)
|
616 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
617 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
618 |
+
if class_num is not None:
|
619 |
+
self.num_class_images = min(len(self.class_images_path), class_num)
|
620 |
+
else:
|
621 |
+
self.num_class_images = len(self.class_images_path)
|
622 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
623 |
+
self.class_prompt = class_prompt
|
624 |
+
else:
|
625 |
+
self.class_data_root = None
|
626 |
+
|
627 |
+
self.image_transforms = transforms.Compose(
|
628 |
+
[
|
629 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
630 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
631 |
+
transforms.ToTensor(),
|
632 |
+
transforms.Normalize([0.5], [0.5]),
|
633 |
+
]
|
634 |
+
)
|
635 |
+
|
636 |
+
def __len__(self):
|
637 |
+
return self._length
|
638 |
+
|
639 |
+
def __getitem__(self, index):
|
640 |
+
example = {}
|
641 |
+
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
642 |
+
instance_image = exif_transpose(instance_image)
|
643 |
+
|
644 |
+
if not instance_image.mode == "RGB":
|
645 |
+
instance_image = instance_image.convert("RGB")
|
646 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
647 |
+
|
648 |
+
if self.encoder_hidden_states is not None:
|
649 |
+
example["instance_prompt_ids"] = self.encoder_hidden_states
|
650 |
+
else:
|
651 |
+
text_inputs = tokenize_prompt(
|
652 |
+
self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
|
653 |
+
)
|
654 |
+
example["instance_prompt_ids"] = text_inputs.input_ids
|
655 |
+
example["instance_attention_mask"] = text_inputs.attention_mask
|
656 |
+
|
657 |
+
if self.class_data_root:
|
658 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
659 |
+
class_image = exif_transpose(class_image)
|
660 |
+
|
661 |
+
if not class_image.mode == "RGB":
|
662 |
+
class_image = class_image.convert("RGB")
|
663 |
+
example["class_images"] = self.image_transforms(class_image)
|
664 |
+
|
665 |
+
if self.class_prompt_encoder_hidden_states is not None:
|
666 |
+
example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
|
667 |
+
else:
|
668 |
+
class_text_inputs = tokenize_prompt(
|
669 |
+
self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
|
670 |
+
)
|
671 |
+
example["class_prompt_ids"] = class_text_inputs.input_ids
|
672 |
+
example["class_attention_mask"] = class_text_inputs.attention_mask
|
673 |
+
|
674 |
+
return example
|
675 |
+
|
676 |
+
|
677 |
+
def collate_fn(examples, with_prior_preservation=False):
|
678 |
+
has_attention_mask = "instance_attention_mask" in examples[0]
|
679 |
+
|
680 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
681 |
+
pixel_values = [example["instance_images"] for example in examples]
|
682 |
+
|
683 |
+
if has_attention_mask:
|
684 |
+
attention_mask = [example["instance_attention_mask"] for example in examples]
|
685 |
+
|
686 |
+
# Concat class and instance examples for prior preservation.
|
687 |
+
# We do this to avoid doing two forward passes.
|
688 |
+
if with_prior_preservation:
|
689 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
690 |
+
pixel_values += [example["class_images"] for example in examples]
|
691 |
+
|
692 |
+
if has_attention_mask:
|
693 |
+
attention_mask += [example["class_attention_mask"] for example in examples]
|
694 |
+
|
695 |
+
pixel_values = torch.stack(pixel_values)
|
696 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
697 |
+
|
698 |
+
input_ids = torch.cat(input_ids, dim=0)
|
699 |
+
|
700 |
+
batch = {
|
701 |
+
"input_ids": input_ids,
|
702 |
+
"pixel_values": pixel_values,
|
703 |
+
}
|
704 |
+
|
705 |
+
if has_attention_mask:
|
706 |
+
attention_mask = torch.cat(attention_mask, dim=0)
|
707 |
+
batch["attention_mask"] = attention_mask
|
708 |
+
|
709 |
+
return batch
|
710 |
+
|
711 |
+
|
712 |
+
class PromptDataset(Dataset):
|
713 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
714 |
+
|
715 |
+
def __init__(self, prompt, num_samples):
|
716 |
+
self.prompt = prompt
|
717 |
+
self.num_samples = num_samples
|
718 |
+
|
719 |
+
def __len__(self):
|
720 |
+
return self.num_samples
|
721 |
+
|
722 |
+
def __getitem__(self, index):
|
723 |
+
example = {}
|
724 |
+
example["prompt"] = self.prompt
|
725 |
+
example["index"] = index
|
726 |
+
return example
|
727 |
+
|
728 |
+
|
729 |
+
def model_has_vae(args):
|
730 |
+
config_file_name = os.path.join("vae", AutoencoderKL.config_name)
|
731 |
+
if os.path.isdir(args.pretrained_model_name_or_path):
|
732 |
+
config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
|
733 |
+
return os.path.isfile(config_file_name)
|
734 |
+
else:
|
735 |
+
files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
|
736 |
+
return any(file.rfilename == config_file_name for file in files_in_repo)
|
737 |
+
|
738 |
+
|
739 |
+
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
|
740 |
+
if tokenizer_max_length is not None:
|
741 |
+
max_length = tokenizer_max_length
|
742 |
+
else:
|
743 |
+
max_length = tokenizer.model_max_length
|
744 |
+
|
745 |
+
text_inputs = tokenizer(
|
746 |
+
prompt,
|
747 |
+
truncation=True,
|
748 |
+
padding="max_length",
|
749 |
+
max_length=max_length,
|
750 |
+
return_tensors="pt",
|
751 |
+
)
|
752 |
+
|
753 |
+
return text_inputs
|
754 |
+
|
755 |
+
|
756 |
+
def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
|
757 |
+
text_input_ids = input_ids.to(text_encoder.device)
|
758 |
+
|
759 |
+
if text_encoder_use_attention_mask:
|
760 |
+
attention_mask = attention_mask.to(text_encoder.device)
|
761 |
+
else:
|
762 |
+
attention_mask = None
|
763 |
+
|
764 |
+
prompt_embeds = text_encoder(
|
765 |
+
text_input_ids,
|
766 |
+
attention_mask=attention_mask,
|
767 |
+
)
|
768 |
+
prompt_embeds = prompt_embeds[0]
|
769 |
+
|
770 |
+
return prompt_embeds
|
771 |
+
|
772 |
+
|
773 |
+
def main(args):
|
774 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
775 |
+
|
776 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
777 |
+
|
778 |
+
accelerator = Accelerator(
|
779 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
780 |
+
mixed_precision=args.mixed_precision,
|
781 |
+
log_with=args.report_to,
|
782 |
+
project_config=accelerator_project_config,
|
783 |
+
)
|
784 |
+
|
785 |
+
if args.report_to == "wandb":
|
786 |
+
if not is_wandb_available():
|
787 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
788 |
+
|
789 |
+
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
790 |
+
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
791 |
+
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
792 |
+
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
793 |
+
raise ValueError(
|
794 |
+
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
795 |
+
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
796 |
+
)
|
797 |
+
|
798 |
+
# Make one log on every process with the configuration for debugging.
|
799 |
+
logging.basicConfig(
|
800 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
801 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
802 |
+
level=logging.INFO,
|
803 |
+
)
|
804 |
+
logger.info(accelerator.state, main_process_only=False)
|
805 |
+
if accelerator.is_local_main_process:
|
806 |
+
transformers.utils.logging.set_verbosity_warning()
|
807 |
+
diffusers.utils.logging.set_verbosity_info()
|
808 |
+
else:
|
809 |
+
transformers.utils.logging.set_verbosity_error()
|
810 |
+
diffusers.utils.logging.set_verbosity_error()
|
811 |
+
|
812 |
+
# If passed along, set the training seed now.
|
813 |
+
if args.seed is not None:
|
814 |
+
set_seed(args.seed)
|
815 |
+
|
816 |
+
# Generate class images if prior preservation is enabled.
|
817 |
+
if args.with_prior_preservation:
|
818 |
+
class_images_dir = Path(args.class_data_dir)
|
819 |
+
if not class_images_dir.exists():
|
820 |
+
class_images_dir.mkdir(parents=True)
|
821 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
822 |
+
|
823 |
+
if cur_class_images < args.num_class_images:
|
824 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
825 |
+
if args.prior_generation_precision == "fp32":
|
826 |
+
torch_dtype = torch.float32
|
827 |
+
elif args.prior_generation_precision == "fp16":
|
828 |
+
torch_dtype = torch.float16
|
829 |
+
elif args.prior_generation_precision == "bf16":
|
830 |
+
torch_dtype = torch.bfloat16
|
831 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
832 |
+
args.pretrained_model_name_or_path,
|
833 |
+
torch_dtype=torch_dtype,
|
834 |
+
safety_checker=None,
|
835 |
+
revision=args.revision,
|
836 |
+
)
|
837 |
+
pipeline.set_progress_bar_config(disable=True)
|
838 |
+
|
839 |
+
num_new_images = args.num_class_images - cur_class_images
|
840 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
841 |
+
|
842 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
843 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
844 |
+
|
845 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
846 |
+
pipeline.to(accelerator.device)
|
847 |
+
|
848 |
+
for example in tqdm(
|
849 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
850 |
+
):
|
851 |
+
images = pipeline(example["prompt"]).images
|
852 |
+
|
853 |
+
for i, image in enumerate(images):
|
854 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
855 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
856 |
+
image.save(image_filename)
|
857 |
+
|
858 |
+
del pipeline
|
859 |
+
if torch.cuda.is_available():
|
860 |
+
torch.cuda.empty_cache()
|
861 |
+
|
862 |
+
# Handle the repository creation
|
863 |
+
if accelerator.is_main_process:
|
864 |
+
if args.output_dir is not None:
|
865 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
866 |
+
|
867 |
+
if args.push_to_hub:
|
868 |
+
repo_id = create_repo(
|
869 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
870 |
+
).repo_id
|
871 |
+
|
872 |
+
# Load the tokenizer
|
873 |
+
if args.tokenizer_name:
|
874 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
875 |
+
elif args.pretrained_model_name_or_path:
|
876 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
877 |
+
args.pretrained_model_name_or_path,
|
878 |
+
subfolder="tokenizer",
|
879 |
+
revision=args.revision,
|
880 |
+
use_fast=False,
|
881 |
+
)
|
882 |
+
|
883 |
+
# import correct text encoder class
|
884 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
885 |
+
|
886 |
+
# Load scheduler and models
|
887 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
888 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
889 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
890 |
+
)
|
891 |
+
|
892 |
+
if model_has_vae(args):
|
893 |
+
vae = AutoencoderKL.from_pretrained(
|
894 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
|
895 |
+
)
|
896 |
+
else:
|
897 |
+
vae = None
|
898 |
+
|
899 |
+
unet = UNet2DConditionModel.from_pretrained(
|
900 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
901 |
+
)
|
902 |
+
|
903 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
904 |
+
def save_model_hook(models, weights, output_dir):
|
905 |
+
for model in models:
|
906 |
+
sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
|
907 |
+
model.save_pretrained(os.path.join(output_dir, sub_dir))
|
908 |
+
|
909 |
+
# make sure to pop weight so that corresponding model is not saved again
|
910 |
+
weights.pop()
|
911 |
+
|
912 |
+
def load_model_hook(models, input_dir):
|
913 |
+
while len(models) > 0:
|
914 |
+
# pop models so that they are not loaded again
|
915 |
+
model = models.pop()
|
916 |
+
|
917 |
+
if isinstance(model, type(accelerator.unwrap_model(text_encoder))):
|
918 |
+
# load transformers style into model
|
919 |
+
load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
|
920 |
+
model.config = load_model.config
|
921 |
+
else:
|
922 |
+
# load diffusers style into model
|
923 |
+
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
|
924 |
+
model.register_to_config(**load_model.config)
|
925 |
+
|
926 |
+
model.load_state_dict(load_model.state_dict())
|
927 |
+
del load_model
|
928 |
+
|
929 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
930 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
931 |
+
|
932 |
+
if vae is not None:
|
933 |
+
vae.requires_grad_(False)
|
934 |
+
|
935 |
+
if not args.train_text_encoder:
|
936 |
+
text_encoder.requires_grad_(False)
|
937 |
+
|
938 |
+
if args.enable_xformers_memory_efficient_attention:
|
939 |
+
if is_xformers_available():
|
940 |
+
import xformers
|
941 |
+
|
942 |
+
xformers_version = version.parse(xformers.__version__)
|
943 |
+
if xformers_version == version.parse("0.0.16"):
|
944 |
+
logger.warn(
|
945 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
946 |
+
)
|
947 |
+
unet.enable_xformers_memory_efficient_attention()
|
948 |
+
else:
|
949 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
950 |
+
|
951 |
+
if args.gradient_checkpointing:
|
952 |
+
unet.enable_gradient_checkpointing()
|
953 |
+
if args.train_text_encoder:
|
954 |
+
text_encoder.gradient_checkpointing_enable()
|
955 |
+
|
956 |
+
# Check that all trainable models are in full precision
|
957 |
+
low_precision_error_string = (
|
958 |
+
"Please make sure to always have all model weights in full float32 precision when starting training - even if"
|
959 |
+
" doing mixed precision training. copy of the weights should still be float32."
|
960 |
+
)
|
961 |
+
|
962 |
+
if accelerator.unwrap_model(unet).dtype != torch.float32:
|
963 |
+
raise ValueError(
|
964 |
+
f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
|
965 |
+
)
|
966 |
+
|
967 |
+
if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
|
968 |
+
raise ValueError(
|
969 |
+
f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
|
970 |
+
f" {low_precision_error_string}"
|
971 |
+
)
|
972 |
+
|
973 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
974 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
975 |
+
if args.allow_tf32:
|
976 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
977 |
+
|
978 |
+
if args.scale_lr:
|
979 |
+
args.learning_rate = (
|
980 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
981 |
+
)
|
982 |
+
|
983 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
984 |
+
if args.use_8bit_adam:
|
985 |
+
try:
|
986 |
+
import bitsandbytes as bnb
|
987 |
+
except ImportError:
|
988 |
+
raise ImportError(
|
989 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
990 |
+
)
|
991 |
+
|
992 |
+
optimizer_class = bnb.optim.AdamW8bit
|
993 |
+
else:
|
994 |
+
optimizer_class = torch.optim.AdamW
|
995 |
+
|
996 |
+
# Optimizer creation
|
997 |
+
params_to_optimize = (
|
998 |
+
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
|
999 |
+
)
|
1000 |
+
optimizer = optimizer_class(
|
1001 |
+
params_to_optimize,
|
1002 |
+
lr=args.learning_rate,
|
1003 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
1004 |
+
weight_decay=args.adam_weight_decay,
|
1005 |
+
eps=args.adam_epsilon,
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
if args.pre_compute_text_embeddings:
|
1009 |
+
|
1010 |
+
def compute_text_embeddings(prompt):
|
1011 |
+
with torch.no_grad():
|
1012 |
+
text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
|
1013 |
+
prompt_embeds = encode_prompt(
|
1014 |
+
text_encoder,
|
1015 |
+
text_inputs.input_ids,
|
1016 |
+
text_inputs.attention_mask,
|
1017 |
+
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
return prompt_embeds
|
1021 |
+
|
1022 |
+
pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
|
1023 |
+
validation_prompt_negative_prompt_embeds = compute_text_embeddings("")
|
1024 |
+
|
1025 |
+
if args.validation_prompt is not None:
|
1026 |
+
validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
|
1027 |
+
else:
|
1028 |
+
validation_prompt_encoder_hidden_states = None
|
1029 |
+
|
1030 |
+
if args.class_prompt is not None:
|
1031 |
+
pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
|
1032 |
+
else:
|
1033 |
+
pre_computed_class_prompt_encoder_hidden_states = None
|
1034 |
+
|
1035 |
+
text_encoder = None
|
1036 |
+
tokenizer = None
|
1037 |
+
|
1038 |
+
gc.collect()
|
1039 |
+
torch.cuda.empty_cache()
|
1040 |
+
else:
|
1041 |
+
pre_computed_encoder_hidden_states = None
|
1042 |
+
validation_prompt_encoder_hidden_states = None
|
1043 |
+
validation_prompt_negative_prompt_embeds = None
|
1044 |
+
pre_computed_class_prompt_encoder_hidden_states = None
|
1045 |
+
|
1046 |
+
# Dataset and DataLoaders creation:
|
1047 |
+
train_dataset = DreamBoothDataset(
|
1048 |
+
instance_data_root=args.instance_data_dir,
|
1049 |
+
instance_prompt=args.instance_prompt,
|
1050 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
1051 |
+
class_prompt=args.class_prompt,
|
1052 |
+
class_num=args.num_class_images,
|
1053 |
+
tokenizer=tokenizer,
|
1054 |
+
size=args.resolution,
|
1055 |
+
center_crop=args.center_crop,
|
1056 |
+
encoder_hidden_states=pre_computed_encoder_hidden_states,
|
1057 |
+
class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
|
1058 |
+
tokenizer_max_length=args.tokenizer_max_length,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
train_dataloader = torch.utils.data.DataLoader(
|
1062 |
+
train_dataset,
|
1063 |
+
batch_size=args.train_batch_size,
|
1064 |
+
shuffle=True,
|
1065 |
+
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
1066 |
+
num_workers=args.dataloader_num_workers,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
# Scheduler and math around the number of training steps.
|
1070 |
+
overrode_max_train_steps = False
|
1071 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1072 |
+
if args.max_train_steps is None:
|
1073 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1074 |
+
overrode_max_train_steps = True
|
1075 |
+
|
1076 |
+
lr_scheduler = get_scheduler(
|
1077 |
+
args.lr_scheduler,
|
1078 |
+
optimizer=optimizer,
|
1079 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
1080 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
1081 |
+
num_cycles=args.lr_num_cycles,
|
1082 |
+
power=args.lr_power,
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
# Prepare everything with our `accelerator`.
|
1086 |
+
if args.train_text_encoder:
|
1087 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1088 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
1089 |
+
)
|
1090 |
+
else:
|
1091 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1092 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
|
1096 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
1097 |
+
weight_dtype = torch.float32
|
1098 |
+
if accelerator.mixed_precision == "fp16":
|
1099 |
+
weight_dtype = torch.float16
|
1100 |
+
elif accelerator.mixed_precision == "bf16":
|
1101 |
+
weight_dtype = torch.bfloat16
|
1102 |
+
|
1103 |
+
# Move vae and text_encoder to device and cast to weight_dtype
|
1104 |
+
if vae is not None:
|
1105 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
1106 |
+
|
1107 |
+
if not args.train_text_encoder and text_encoder is not None:
|
1108 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
1109 |
+
|
1110 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
1111 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1112 |
+
if overrode_max_train_steps:
|
1113 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1114 |
+
# Afterwards we recalculate our number of training epochs
|
1115 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
1116 |
+
|
1117 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
1118 |
+
# The trackers initializes automatically on the main process.
|
1119 |
+
if accelerator.is_main_process:
|
1120 |
+
tracker_config = vars(copy.deepcopy(args))
|
1121 |
+
tracker_config.pop("validation_images")
|
1122 |
+
accelerator.init_trackers("dreambooth", config=tracker_config)
|
1123 |
+
|
1124 |
+
# Train!
|
1125 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
1126 |
+
|
1127 |
+
logger.info("***** Running training *****")
|
1128 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
1129 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
1130 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
1131 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
1132 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
1133 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
1134 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
1135 |
+
global_step = 0
|
1136 |
+
first_epoch = 0
|
1137 |
+
|
1138 |
+
# Potentially load in the weights and states from a previous save
|
1139 |
+
if args.resume_from_checkpoint:
|
1140 |
+
if args.resume_from_checkpoint != "latest":
|
1141 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1142 |
+
else:
|
1143 |
+
# Get the mos recent checkpoint
|
1144 |
+
dirs = os.listdir(args.output_dir)
|
1145 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1146 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1147 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1148 |
+
|
1149 |
+
if path is None:
|
1150 |
+
accelerator.print(
|
1151 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1152 |
+
)
|
1153 |
+
args.resume_from_checkpoint = None
|
1154 |
+
else:
|
1155 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1156 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1157 |
+
global_step = int(path.split("-")[1])
|
1158 |
+
|
1159 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
1160 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
1161 |
+
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
1162 |
+
|
1163 |
+
# Only show the progress bar once on each machine.
|
1164 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
1165 |
+
progress_bar.set_description("Steps")
|
1166 |
+
|
1167 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
1168 |
+
unet.train()
|
1169 |
+
if args.train_text_encoder:
|
1170 |
+
text_encoder.train()
|
1171 |
+
for step, batch in enumerate(train_dataloader):
|
1172 |
+
# Skip steps until we reach the resumed step
|
1173 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
1174 |
+
if step % args.gradient_accumulation_steps == 0:
|
1175 |
+
progress_bar.update(1)
|
1176 |
+
continue
|
1177 |
+
|
1178 |
+
with accelerator.accumulate(unet):
|
1179 |
+
pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
|
1180 |
+
|
1181 |
+
if vae is not None:
|
1182 |
+
# Convert images to latent space
|
1183 |
+
model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
1184 |
+
model_input = model_input * vae.config.scaling_factor
|
1185 |
+
else:
|
1186 |
+
model_input = pixel_values
|
1187 |
+
|
1188 |
+
# Sample noise that we'll add to the model input
|
1189 |
+
if args.offset_noise:
|
1190 |
+
noise = torch.randn_like(model_input) + 0.1 * torch.randn(
|
1191 |
+
model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
|
1192 |
+
)
|
1193 |
+
else:
|
1194 |
+
noise = torch.randn_like(model_input)
|
1195 |
+
bsz, channels, height, width = model_input.shape
|
1196 |
+
# Sample a random timestep for each image
|
1197 |
+
timesteps = torch.randint(
|
1198 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
1199 |
+
)
|
1200 |
+
timesteps = timesteps.long()
|
1201 |
+
|
1202 |
+
# Add noise to the model input according to the noise magnitude at each timestep
|
1203 |
+
# (this is the forward diffusion process)
|
1204 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
1205 |
+
|
1206 |
+
# Get the text embedding for conditioning
|
1207 |
+
if args.pre_compute_text_embeddings:
|
1208 |
+
encoder_hidden_states = batch["input_ids"]
|
1209 |
+
else:
|
1210 |
+
encoder_hidden_states = encode_prompt(
|
1211 |
+
text_encoder,
|
1212 |
+
batch["input_ids"],
|
1213 |
+
batch["attention_mask"],
|
1214 |
+
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
if accelerator.unwrap_model(unet).config.in_channels == channels * 2:
|
1218 |
+
noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
|
1219 |
+
|
1220 |
+
if args.class_labels_conditioning == "timesteps":
|
1221 |
+
class_labels = timesteps
|
1222 |
+
else:
|
1223 |
+
class_labels = None
|
1224 |
+
|
1225 |
+
# Predict the noise residual
|
1226 |
+
model_pred = unet(
|
1227 |
+
noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
|
1228 |
+
).sample
|
1229 |
+
|
1230 |
+
if model_pred.shape[1] == 6:
|
1231 |
+
model_pred, _ = torch.chunk(model_pred, 2, dim=1)
|
1232 |
+
|
1233 |
+
# Get the target for loss depending on the prediction type
|
1234 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1235 |
+
target = noise
|
1236 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1237 |
+
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
|
1238 |
+
else:
|
1239 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1240 |
+
|
1241 |
+
if args.with_prior_preservation:
|
1242 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
1243 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
1244 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
1245 |
+
|
1246 |
+
# Compute instance loss
|
1247 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1248 |
+
|
1249 |
+
# Compute prior loss
|
1250 |
+
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
1251 |
+
|
1252 |
+
# Add the prior loss to the instance loss.
|
1253 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
1254 |
+
else:
|
1255 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1256 |
+
|
1257 |
+
accelerator.backward(loss)
|
1258 |
+
if accelerator.sync_gradients:
|
1259 |
+
params_to_clip = (
|
1260 |
+
itertools.chain(unet.parameters(), text_encoder.parameters())
|
1261 |
+
if args.train_text_encoder
|
1262 |
+
else unet.parameters()
|
1263 |
+
)
|
1264 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1265 |
+
optimizer.step()
|
1266 |
+
lr_scheduler.step()
|
1267 |
+
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
|
1268 |
+
|
1269 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1270 |
+
if accelerator.sync_gradients:
|
1271 |
+
progress_bar.update(1)
|
1272 |
+
global_step += 1
|
1273 |
+
|
1274 |
+
if accelerator.is_main_process:
|
1275 |
+
if global_step % args.checkpointing_steps == 0:
|
1276 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1277 |
+
if args.checkpoints_total_limit is not None:
|
1278 |
+
checkpoints = os.listdir(args.output_dir)
|
1279 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1280 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1281 |
+
|
1282 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1283 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1284 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1285 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1286 |
+
|
1287 |
+
logger.info(
|
1288 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1289 |
+
)
|
1290 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1291 |
+
|
1292 |
+
for removing_checkpoint in removing_checkpoints:
|
1293 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1294 |
+
shutil.rmtree(removing_checkpoint)
|
1295 |
+
|
1296 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1297 |
+
accelerator.save_state(save_path)
|
1298 |
+
logger.info(f"Saved state to {save_path}")
|
1299 |
+
|
1300 |
+
images = []
|
1301 |
+
|
1302 |
+
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
|
1303 |
+
images = log_validation(
|
1304 |
+
text_encoder,
|
1305 |
+
tokenizer,
|
1306 |
+
unet,
|
1307 |
+
vae,
|
1308 |
+
args,
|
1309 |
+
accelerator,
|
1310 |
+
weight_dtype,
|
1311 |
+
epoch,
|
1312 |
+
validation_prompt_encoder_hidden_states,
|
1313 |
+
validation_prompt_negative_prompt_embeds,
|
1314 |
+
)
|
1315 |
+
|
1316 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1317 |
+
progress_bar.set_postfix(**logs)
|
1318 |
+
accelerator.log(logs, step=global_step)
|
1319 |
+
|
1320 |
+
if global_step >= args.max_train_steps:
|
1321 |
+
break
|
1322 |
+
|
1323 |
+
# Create the pipeline using using the trained modules and save it.
|
1324 |
+
accelerator.wait_for_everyone()
|
1325 |
+
if accelerator.is_main_process:
|
1326 |
+
pipeline_args = {}
|
1327 |
+
|
1328 |
+
if text_encoder is not None:
|
1329 |
+
pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)
|
1330 |
+
|
1331 |
+
if args.skip_save_text_encoder:
|
1332 |
+
pipeline_args["text_encoder"] = None
|
1333 |
+
|
1334 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
1335 |
+
args.pretrained_model_name_or_path,
|
1336 |
+
unet=accelerator.unwrap_model(unet),
|
1337 |
+
revision=args.revision,
|
1338 |
+
**pipeline_args,
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1342 |
+
scheduler_args = {}
|
1343 |
+
|
1344 |
+
if "variance_type" in pipeline.scheduler.config:
|
1345 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1346 |
+
|
1347 |
+
if variance_type in ["learned", "learned_range"]:
|
1348 |
+
variance_type = "fixed_small"
|
1349 |
+
|
1350 |
+
scheduler_args["variance_type"] = variance_type
|
1351 |
+
|
1352 |
+
pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)
|
1353 |
+
|
1354 |
+
pipeline.save_pretrained(args.output_dir)
|
1355 |
+
|
1356 |
+
if args.push_to_hub:
|
1357 |
+
save_model_card(
|
1358 |
+
repo_id,
|
1359 |
+
images=images,
|
1360 |
+
base_model=args.pretrained_model_name_or_path,
|
1361 |
+
train_text_encoder=args.train_text_encoder,
|
1362 |
+
prompt=args.instance_prompt,
|
1363 |
+
repo_folder=args.output_dir,
|
1364 |
+
pipeline=pipeline,
|
1365 |
+
)
|
1366 |
+
upload_folder(
|
1367 |
+
repo_id=repo_id,
|
1368 |
+
folder_path=args.output_dir,
|
1369 |
+
commit_message="End of training",
|
1370 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
accelerator.end_training()
|
1374 |
+
|
1375 |
+
|
1376 |
+
if __name__ == "__main__":
|
1377 |
+
args = parse_args()
|
1378 |
+
main(args)
|
train_dreambooth_flax.py
ADDED
@@ -0,0 +1,709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import hashlib
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import jax
|
10 |
+
import jax.numpy as jnp
|
11 |
+
import numpy as np
|
12 |
+
import optax
|
13 |
+
import torch
|
14 |
+
import torch.utils.checkpoint
|
15 |
+
import transformers
|
16 |
+
from flax import jax_utils
|
17 |
+
from flax.training import train_state
|
18 |
+
from flax.training.common_utils import shard
|
19 |
+
from huggingface_hub import HfFolder, Repository, create_repo, whoami
|
20 |
+
from jax.experimental.compilation_cache import compilation_cache as cc
|
21 |
+
from PIL import Image
|
22 |
+
from torch.utils.data import Dataset
|
23 |
+
from torchvision import transforms
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
|
26 |
+
|
27 |
+
from diffusers import (
|
28 |
+
FlaxAutoencoderKL,
|
29 |
+
FlaxDDPMScheduler,
|
30 |
+
FlaxPNDMScheduler,
|
31 |
+
FlaxStableDiffusionPipeline,
|
32 |
+
FlaxUNet2DConditionModel,
|
33 |
+
)
|
34 |
+
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
|
35 |
+
from diffusers.utils import check_min_version
|
36 |
+
|
37 |
+
|
38 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
39 |
+
check_min_version("0.20.0.dev0")
|
40 |
+
|
41 |
+
# Cache compiled models across invocations of this script.
|
42 |
+
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache"))
|
43 |
+
|
44 |
+
logger = logging.getLogger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
def parse_args():
|
48 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
49 |
+
parser.add_argument(
|
50 |
+
"--pretrained_model_name_or_path",
|
51 |
+
type=str,
|
52 |
+
default=None,
|
53 |
+
required=True,
|
54 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pretrained_vae_name_or_path",
|
58 |
+
type=str,
|
59 |
+
default=None,
|
60 |
+
help="Path to pretrained vae or vae identifier from huggingface.co/models.",
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--revision",
|
64 |
+
type=str,
|
65 |
+
default=None,
|
66 |
+
required=False,
|
67 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
68 |
+
)
|
69 |
+
parser.add_argument(
|
70 |
+
"--tokenizer_name",
|
71 |
+
type=str,
|
72 |
+
default=None,
|
73 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
74 |
+
)
|
75 |
+
parser.add_argument(
|
76 |
+
"--instance_data_dir",
|
77 |
+
type=str,
|
78 |
+
default=None,
|
79 |
+
required=True,
|
80 |
+
help="A folder containing the training data of instance images.",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--class_data_dir",
|
84 |
+
type=str,
|
85 |
+
default=None,
|
86 |
+
required=False,
|
87 |
+
help="A folder containing the training data of class images.",
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"--instance_prompt",
|
91 |
+
type=str,
|
92 |
+
default=None,
|
93 |
+
help="The prompt with identifier specifying the instance",
|
94 |
+
)
|
95 |
+
parser.add_argument(
|
96 |
+
"--class_prompt",
|
97 |
+
type=str,
|
98 |
+
default=None,
|
99 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--with_prior_preservation",
|
103 |
+
default=False,
|
104 |
+
action="store_true",
|
105 |
+
help="Flag to add prior preservation loss.",
|
106 |
+
)
|
107 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
108 |
+
parser.add_argument(
|
109 |
+
"--num_class_images",
|
110 |
+
type=int,
|
111 |
+
default=100,
|
112 |
+
help=(
|
113 |
+
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
114 |
+
" class_data_dir, additional images will be sampled with class_prompt."
|
115 |
+
),
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--output_dir",
|
119 |
+
type=str,
|
120 |
+
default="text-inversion-model",
|
121 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
122 |
+
)
|
123 |
+
parser.add_argument("--save_steps", type=int, default=None, help="Save a checkpoint every X steps.")
|
124 |
+
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
|
125 |
+
parser.add_argument(
|
126 |
+
"--resolution",
|
127 |
+
type=int,
|
128 |
+
default=512,
|
129 |
+
help=(
|
130 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
131 |
+
" resolution"
|
132 |
+
),
|
133 |
+
)
|
134 |
+
parser.add_argument(
|
135 |
+
"--center_crop",
|
136 |
+
default=False,
|
137 |
+
action="store_true",
|
138 |
+
help=(
|
139 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
140 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
141 |
+
),
|
142 |
+
)
|
143 |
+
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
144 |
+
parser.add_argument(
|
145 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
149 |
+
)
|
150 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
151 |
+
parser.add_argument(
|
152 |
+
"--max_train_steps",
|
153 |
+
type=int,
|
154 |
+
default=None,
|
155 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--learning_rate",
|
159 |
+
type=float,
|
160 |
+
default=5e-6,
|
161 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--scale_lr",
|
165 |
+
action="store_true",
|
166 |
+
default=False,
|
167 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
168 |
+
)
|
169 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
170 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
171 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
172 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
173 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
174 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
175 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
176 |
+
parser.add_argument(
|
177 |
+
"--hub_model_id",
|
178 |
+
type=str,
|
179 |
+
default=None,
|
180 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--logging_dir",
|
184 |
+
type=str,
|
185 |
+
default="logs",
|
186 |
+
help=(
|
187 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
188 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
189 |
+
),
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"--mixed_precision",
|
193 |
+
type=str,
|
194 |
+
default="no",
|
195 |
+
choices=["no", "fp16", "bf16"],
|
196 |
+
help=(
|
197 |
+
"Whether to use mixed precision. Choose"
|
198 |
+
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
199 |
+
"and an Nvidia Ampere GPU."
|
200 |
+
),
|
201 |
+
)
|
202 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
203 |
+
|
204 |
+
args = parser.parse_args()
|
205 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
206 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
207 |
+
args.local_rank = env_local_rank
|
208 |
+
|
209 |
+
if args.instance_data_dir is None:
|
210 |
+
raise ValueError("You must specify a train data directory.")
|
211 |
+
|
212 |
+
if args.with_prior_preservation:
|
213 |
+
if args.class_data_dir is None:
|
214 |
+
raise ValueError("You must specify a data directory for class images.")
|
215 |
+
if args.class_prompt is None:
|
216 |
+
raise ValueError("You must specify prompt for class images.")
|
217 |
+
|
218 |
+
return args
|
219 |
+
|
220 |
+
|
221 |
+
class DreamBoothDataset(Dataset):
|
222 |
+
"""
|
223 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
224 |
+
It pre-processes the images and the tokenizes prompts.
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
instance_data_root,
|
230 |
+
instance_prompt,
|
231 |
+
tokenizer,
|
232 |
+
class_data_root=None,
|
233 |
+
class_prompt=None,
|
234 |
+
class_num=None,
|
235 |
+
size=512,
|
236 |
+
center_crop=False,
|
237 |
+
):
|
238 |
+
self.size = size
|
239 |
+
self.center_crop = center_crop
|
240 |
+
self.tokenizer = tokenizer
|
241 |
+
|
242 |
+
self.instance_data_root = Path(instance_data_root)
|
243 |
+
if not self.instance_data_root.exists():
|
244 |
+
raise ValueError("Instance images root doesn't exists.")
|
245 |
+
|
246 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
247 |
+
self.num_instance_images = len(self.instance_images_path)
|
248 |
+
self.instance_prompt = instance_prompt
|
249 |
+
self._length = self.num_instance_images
|
250 |
+
|
251 |
+
if class_data_root is not None:
|
252 |
+
self.class_data_root = Path(class_data_root)
|
253 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
254 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
255 |
+
if class_num is not None:
|
256 |
+
self.num_class_images = min(len(self.class_images_path), class_num)
|
257 |
+
else:
|
258 |
+
self.num_class_images = len(self.class_images_path)
|
259 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
260 |
+
self.class_prompt = class_prompt
|
261 |
+
else:
|
262 |
+
self.class_data_root = None
|
263 |
+
|
264 |
+
self.image_transforms = transforms.Compose(
|
265 |
+
[
|
266 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
267 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
268 |
+
transforms.ToTensor(),
|
269 |
+
transforms.Normalize([0.5], [0.5]),
|
270 |
+
]
|
271 |
+
)
|
272 |
+
|
273 |
+
def __len__(self):
|
274 |
+
return self._length
|
275 |
+
|
276 |
+
def __getitem__(self, index):
|
277 |
+
example = {}
|
278 |
+
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
279 |
+
if not instance_image.mode == "RGB":
|
280 |
+
instance_image = instance_image.convert("RGB")
|
281 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
282 |
+
example["instance_prompt_ids"] = self.tokenizer(
|
283 |
+
self.instance_prompt,
|
284 |
+
padding="do_not_pad",
|
285 |
+
truncation=True,
|
286 |
+
max_length=self.tokenizer.model_max_length,
|
287 |
+
).input_ids
|
288 |
+
|
289 |
+
if self.class_data_root:
|
290 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
291 |
+
if not class_image.mode == "RGB":
|
292 |
+
class_image = class_image.convert("RGB")
|
293 |
+
example["class_images"] = self.image_transforms(class_image)
|
294 |
+
example["class_prompt_ids"] = self.tokenizer(
|
295 |
+
self.class_prompt,
|
296 |
+
padding="do_not_pad",
|
297 |
+
truncation=True,
|
298 |
+
max_length=self.tokenizer.model_max_length,
|
299 |
+
).input_ids
|
300 |
+
|
301 |
+
return example
|
302 |
+
|
303 |
+
|
304 |
+
class PromptDataset(Dataset):
|
305 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
306 |
+
|
307 |
+
def __init__(self, prompt, num_samples):
|
308 |
+
self.prompt = prompt
|
309 |
+
self.num_samples = num_samples
|
310 |
+
|
311 |
+
def __len__(self):
|
312 |
+
return self.num_samples
|
313 |
+
|
314 |
+
def __getitem__(self, index):
|
315 |
+
example = {}
|
316 |
+
example["prompt"] = self.prompt
|
317 |
+
example["index"] = index
|
318 |
+
return example
|
319 |
+
|
320 |
+
|
321 |
+
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
322 |
+
if token is None:
|
323 |
+
token = HfFolder.get_token()
|
324 |
+
if organization is None:
|
325 |
+
username = whoami(token)["name"]
|
326 |
+
return f"{username}/{model_id}"
|
327 |
+
else:
|
328 |
+
return f"{organization}/{model_id}"
|
329 |
+
|
330 |
+
|
331 |
+
def get_params_to_save(params):
|
332 |
+
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
|
333 |
+
|
334 |
+
|
335 |
+
def main():
|
336 |
+
args = parse_args()
|
337 |
+
|
338 |
+
logging.basicConfig(
|
339 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
340 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
341 |
+
level=logging.INFO,
|
342 |
+
)
|
343 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
344 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
345 |
+
if jax.process_index() == 0:
|
346 |
+
transformers.utils.logging.set_verbosity_info()
|
347 |
+
else:
|
348 |
+
transformers.utils.logging.set_verbosity_error()
|
349 |
+
|
350 |
+
if args.seed is not None:
|
351 |
+
set_seed(args.seed)
|
352 |
+
|
353 |
+
rng = jax.random.PRNGKey(args.seed)
|
354 |
+
|
355 |
+
if args.with_prior_preservation:
|
356 |
+
class_images_dir = Path(args.class_data_dir)
|
357 |
+
if not class_images_dir.exists():
|
358 |
+
class_images_dir.mkdir(parents=True)
|
359 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
360 |
+
|
361 |
+
if cur_class_images < args.num_class_images:
|
362 |
+
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
363 |
+
args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision
|
364 |
+
)
|
365 |
+
pipeline.set_progress_bar_config(disable=True)
|
366 |
+
|
367 |
+
num_new_images = args.num_class_images - cur_class_images
|
368 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
369 |
+
|
370 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
371 |
+
total_sample_batch_size = args.sample_batch_size * jax.local_device_count()
|
372 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size)
|
373 |
+
|
374 |
+
for example in tqdm(
|
375 |
+
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0
|
376 |
+
):
|
377 |
+
prompt_ids = pipeline.prepare_inputs(example["prompt"])
|
378 |
+
prompt_ids = shard(prompt_ids)
|
379 |
+
p_params = jax_utils.replicate(params)
|
380 |
+
rng = jax.random.split(rng)[0]
|
381 |
+
sample_rng = jax.random.split(rng, jax.device_count())
|
382 |
+
images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images
|
383 |
+
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
384 |
+
images = pipeline.numpy_to_pil(np.array(images))
|
385 |
+
|
386 |
+
for i, image in enumerate(images):
|
387 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
388 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
389 |
+
image.save(image_filename)
|
390 |
+
|
391 |
+
del pipeline
|
392 |
+
|
393 |
+
# Handle the repository creation
|
394 |
+
if jax.process_index() == 0:
|
395 |
+
if args.push_to_hub:
|
396 |
+
if args.hub_model_id is None:
|
397 |
+
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
398 |
+
else:
|
399 |
+
repo_name = args.hub_model_id
|
400 |
+
create_repo(repo_name, exist_ok=True, token=args.hub_token)
|
401 |
+
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
|
402 |
+
|
403 |
+
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
404 |
+
if "step_*" not in gitignore:
|
405 |
+
gitignore.write("step_*\n")
|
406 |
+
if "epoch_*" not in gitignore:
|
407 |
+
gitignore.write("epoch_*\n")
|
408 |
+
elif args.output_dir is not None:
|
409 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
410 |
+
|
411 |
+
# Load the tokenizer and add the placeholder token as a additional special token
|
412 |
+
if args.tokenizer_name:
|
413 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
414 |
+
elif args.pretrained_model_name_or_path:
|
415 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
416 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
|
417 |
+
)
|
418 |
+
else:
|
419 |
+
raise NotImplementedError("No tokenizer specified!")
|
420 |
+
|
421 |
+
train_dataset = DreamBoothDataset(
|
422 |
+
instance_data_root=args.instance_data_dir,
|
423 |
+
instance_prompt=args.instance_prompt,
|
424 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
425 |
+
class_prompt=args.class_prompt,
|
426 |
+
class_num=args.num_class_images,
|
427 |
+
tokenizer=tokenizer,
|
428 |
+
size=args.resolution,
|
429 |
+
center_crop=args.center_crop,
|
430 |
+
)
|
431 |
+
|
432 |
+
def collate_fn(examples):
|
433 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
434 |
+
pixel_values = [example["instance_images"] for example in examples]
|
435 |
+
|
436 |
+
# Concat class and instance examples for prior preservation.
|
437 |
+
# We do this to avoid doing two forward passes.
|
438 |
+
if args.with_prior_preservation:
|
439 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
440 |
+
pixel_values += [example["class_images"] for example in examples]
|
441 |
+
|
442 |
+
pixel_values = torch.stack(pixel_values)
|
443 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
444 |
+
|
445 |
+
input_ids = tokenizer.pad(
|
446 |
+
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
447 |
+
).input_ids
|
448 |
+
|
449 |
+
batch = {
|
450 |
+
"input_ids": input_ids,
|
451 |
+
"pixel_values": pixel_values,
|
452 |
+
}
|
453 |
+
batch = {k: v.numpy() for k, v in batch.items()}
|
454 |
+
return batch
|
455 |
+
|
456 |
+
total_train_batch_size = args.train_batch_size * jax.local_device_count()
|
457 |
+
if len(train_dataset) < total_train_batch_size:
|
458 |
+
raise ValueError(
|
459 |
+
f"Training batch size is {total_train_batch_size}, but your dataset only contains"
|
460 |
+
f" {len(train_dataset)} images. Please, use a larger dataset or reduce the effective batch size. Note that"
|
461 |
+
f" there are {jax.local_device_count()} parallel devices, so your batch size can't be smaller than that."
|
462 |
+
)
|
463 |
+
|
464 |
+
train_dataloader = torch.utils.data.DataLoader(
|
465 |
+
train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True
|
466 |
+
)
|
467 |
+
|
468 |
+
weight_dtype = jnp.float32
|
469 |
+
if args.mixed_precision == "fp16":
|
470 |
+
weight_dtype = jnp.float16
|
471 |
+
elif args.mixed_precision == "bf16":
|
472 |
+
weight_dtype = jnp.bfloat16
|
473 |
+
|
474 |
+
if args.pretrained_vae_name_or_path:
|
475 |
+
# TODO(patil-suraj): Upload flax weights for the VAE
|
476 |
+
vae_arg, vae_kwargs = (args.pretrained_vae_name_or_path, {"from_pt": True})
|
477 |
+
else:
|
478 |
+
vae_arg, vae_kwargs = (args.pretrained_model_name_or_path, {"subfolder": "vae", "revision": args.revision})
|
479 |
+
|
480 |
+
# Load models and create wrapper for stable diffusion
|
481 |
+
text_encoder = FlaxCLIPTextModel.from_pretrained(
|
482 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype, revision=args.revision
|
483 |
+
)
|
484 |
+
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
485 |
+
vae_arg,
|
486 |
+
dtype=weight_dtype,
|
487 |
+
**vae_kwargs,
|
488 |
+
)
|
489 |
+
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
490 |
+
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype, revision=args.revision
|
491 |
+
)
|
492 |
+
|
493 |
+
# Optimization
|
494 |
+
if args.scale_lr:
|
495 |
+
args.learning_rate = args.learning_rate * total_train_batch_size
|
496 |
+
|
497 |
+
constant_scheduler = optax.constant_schedule(args.learning_rate)
|
498 |
+
|
499 |
+
adamw = optax.adamw(
|
500 |
+
learning_rate=constant_scheduler,
|
501 |
+
b1=args.adam_beta1,
|
502 |
+
b2=args.adam_beta2,
|
503 |
+
eps=args.adam_epsilon,
|
504 |
+
weight_decay=args.adam_weight_decay,
|
505 |
+
)
|
506 |
+
|
507 |
+
optimizer = optax.chain(
|
508 |
+
optax.clip_by_global_norm(args.max_grad_norm),
|
509 |
+
adamw,
|
510 |
+
)
|
511 |
+
|
512 |
+
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
|
513 |
+
text_encoder_state = train_state.TrainState.create(
|
514 |
+
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer
|
515 |
+
)
|
516 |
+
|
517 |
+
noise_scheduler = FlaxDDPMScheduler(
|
518 |
+
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
|
519 |
+
)
|
520 |
+
noise_scheduler_state = noise_scheduler.create_state()
|
521 |
+
|
522 |
+
# Initialize our training
|
523 |
+
train_rngs = jax.random.split(rng, jax.local_device_count())
|
524 |
+
|
525 |
+
def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng):
|
526 |
+
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
|
527 |
+
|
528 |
+
if args.train_text_encoder:
|
529 |
+
params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params}
|
530 |
+
else:
|
531 |
+
params = {"unet": unet_state.params}
|
532 |
+
|
533 |
+
def compute_loss(params):
|
534 |
+
# Convert images to latent space
|
535 |
+
vae_outputs = vae.apply(
|
536 |
+
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
|
537 |
+
)
|
538 |
+
latents = vae_outputs.latent_dist.sample(sample_rng)
|
539 |
+
# (NHWC) -> (NCHW)
|
540 |
+
latents = jnp.transpose(latents, (0, 3, 1, 2))
|
541 |
+
latents = latents * vae.config.scaling_factor
|
542 |
+
|
543 |
+
# Sample noise that we'll add to the latents
|
544 |
+
noise_rng, timestep_rng = jax.random.split(sample_rng)
|
545 |
+
noise = jax.random.normal(noise_rng, latents.shape)
|
546 |
+
# Sample a random timestep for each image
|
547 |
+
bsz = latents.shape[0]
|
548 |
+
timesteps = jax.random.randint(
|
549 |
+
timestep_rng,
|
550 |
+
(bsz,),
|
551 |
+
0,
|
552 |
+
noise_scheduler.config.num_train_timesteps,
|
553 |
+
)
|
554 |
+
|
555 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
556 |
+
# (this is the forward diffusion process)
|
557 |
+
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
|
558 |
+
|
559 |
+
# Get the text embedding for conditioning
|
560 |
+
if args.train_text_encoder:
|
561 |
+
encoder_hidden_states = text_encoder_state.apply_fn(
|
562 |
+
batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True
|
563 |
+
)[0]
|
564 |
+
else:
|
565 |
+
encoder_hidden_states = text_encoder(
|
566 |
+
batch["input_ids"], params=text_encoder_state.params, train=False
|
567 |
+
)[0]
|
568 |
+
|
569 |
+
# Predict the noise residual
|
570 |
+
model_pred = unet.apply(
|
571 |
+
{"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True
|
572 |
+
).sample
|
573 |
+
|
574 |
+
# Get the target for loss depending on the prediction type
|
575 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
576 |
+
target = noise
|
577 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
578 |
+
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
|
579 |
+
else:
|
580 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
581 |
+
|
582 |
+
if args.with_prior_preservation:
|
583 |
+
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
|
584 |
+
model_pred, model_pred_prior = jnp.split(model_pred, 2, axis=0)
|
585 |
+
target, target_prior = jnp.split(target, 2, axis=0)
|
586 |
+
|
587 |
+
# Compute instance loss
|
588 |
+
loss = (target - model_pred) ** 2
|
589 |
+
loss = loss.mean()
|
590 |
+
|
591 |
+
# Compute prior loss
|
592 |
+
prior_loss = (target_prior - model_pred_prior) ** 2
|
593 |
+
prior_loss = prior_loss.mean()
|
594 |
+
|
595 |
+
# Add the prior loss to the instance loss.
|
596 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
597 |
+
else:
|
598 |
+
loss = (target - model_pred) ** 2
|
599 |
+
loss = loss.mean()
|
600 |
+
|
601 |
+
return loss
|
602 |
+
|
603 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
604 |
+
loss, grad = grad_fn(params)
|
605 |
+
grad = jax.lax.pmean(grad, "batch")
|
606 |
+
|
607 |
+
new_unet_state = unet_state.apply_gradients(grads=grad["unet"])
|
608 |
+
if args.train_text_encoder:
|
609 |
+
new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"])
|
610 |
+
else:
|
611 |
+
new_text_encoder_state = text_encoder_state
|
612 |
+
|
613 |
+
metrics = {"loss": loss}
|
614 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
615 |
+
|
616 |
+
return new_unet_state, new_text_encoder_state, metrics, new_train_rng
|
617 |
+
|
618 |
+
# Create parallel version of the train step
|
619 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1))
|
620 |
+
|
621 |
+
# Replicate the train state on each device
|
622 |
+
unet_state = jax_utils.replicate(unet_state)
|
623 |
+
text_encoder_state = jax_utils.replicate(text_encoder_state)
|
624 |
+
vae_params = jax_utils.replicate(vae_params)
|
625 |
+
|
626 |
+
# Train!
|
627 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
628 |
+
|
629 |
+
# Scheduler and math around the number of training steps.
|
630 |
+
if args.max_train_steps is None:
|
631 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
632 |
+
|
633 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
634 |
+
|
635 |
+
logger.info("***** Running training *****")
|
636 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
637 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
638 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
639 |
+
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
|
640 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
641 |
+
|
642 |
+
def checkpoint(step=None):
|
643 |
+
# Create the pipeline using the trained modules and save it.
|
644 |
+
scheduler, _ = FlaxPNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
|
645 |
+
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
|
646 |
+
"CompVis/stable-diffusion-safety-checker", from_pt=True
|
647 |
+
)
|
648 |
+
pipeline = FlaxStableDiffusionPipeline(
|
649 |
+
text_encoder=text_encoder,
|
650 |
+
vae=vae,
|
651 |
+
unet=unet,
|
652 |
+
tokenizer=tokenizer,
|
653 |
+
scheduler=scheduler,
|
654 |
+
safety_checker=safety_checker,
|
655 |
+
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
|
656 |
+
)
|
657 |
+
|
658 |
+
outdir = os.path.join(args.output_dir, str(step)) if step else args.output_dir
|
659 |
+
pipeline.save_pretrained(
|
660 |
+
outdir,
|
661 |
+
params={
|
662 |
+
"text_encoder": get_params_to_save(text_encoder_state.params),
|
663 |
+
"vae": get_params_to_save(vae_params),
|
664 |
+
"unet": get_params_to_save(unet_state.params),
|
665 |
+
"safety_checker": safety_checker.params,
|
666 |
+
},
|
667 |
+
)
|
668 |
+
|
669 |
+
if args.push_to_hub:
|
670 |
+
message = f"checkpoint-{step}" if step is not None else "End of training"
|
671 |
+
repo.push_to_hub(commit_message=message, blocking=False, auto_lfs_prune=True)
|
672 |
+
|
673 |
+
global_step = 0
|
674 |
+
|
675 |
+
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
|
676 |
+
for epoch in epochs:
|
677 |
+
# ======================== Training ================================
|
678 |
+
|
679 |
+
train_metrics = []
|
680 |
+
|
681 |
+
steps_per_epoch = len(train_dataset) // total_train_batch_size
|
682 |
+
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
|
683 |
+
# train
|
684 |
+
for batch in train_dataloader:
|
685 |
+
batch = shard(batch)
|
686 |
+
unet_state, text_encoder_state, train_metric, train_rngs = p_train_step(
|
687 |
+
unet_state, text_encoder_state, vae_params, batch, train_rngs
|
688 |
+
)
|
689 |
+
train_metrics.append(train_metric)
|
690 |
+
|
691 |
+
train_step_progress_bar.update(jax.local_device_count())
|
692 |
+
|
693 |
+
global_step += 1
|
694 |
+
if jax.process_index() == 0 and args.save_steps and global_step % args.save_steps == 0:
|
695 |
+
checkpoint(global_step)
|
696 |
+
if global_step >= args.max_train_steps:
|
697 |
+
break
|
698 |
+
|
699 |
+
train_metric = jax_utils.unreplicate(train_metric)
|
700 |
+
|
701 |
+
train_step_progress_bar.close()
|
702 |
+
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
|
703 |
+
|
704 |
+
if jax.process_index() == 0:
|
705 |
+
checkpoint()
|
706 |
+
|
707 |
+
|
708 |
+
if __name__ == "__main__":
|
709 |
+
main()
|
train_dreambooth_lora.py
ADDED
@@ -0,0 +1,1424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import copy
|
18 |
+
import gc
|
19 |
+
import hashlib
|
20 |
+
import itertools
|
21 |
+
import logging
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import shutil
|
25 |
+
import warnings
|
26 |
+
from pathlib import Path
|
27 |
+
from typing import Dict
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
import torch.nn.functional as F
|
32 |
+
import torch.utils.checkpoint
|
33 |
+
import transformers
|
34 |
+
from accelerate import Accelerator
|
35 |
+
from accelerate.logging import get_logger
|
36 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
37 |
+
from huggingface_hub import create_repo, upload_folder
|
38 |
+
from packaging import version
|
39 |
+
from PIL import Image
|
40 |
+
from PIL.ImageOps import exif_transpose
|
41 |
+
from torch.utils.data import Dataset
|
42 |
+
from torchvision import transforms
|
43 |
+
from tqdm.auto import tqdm
|
44 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
45 |
+
|
46 |
+
import diffusers
|
47 |
+
from diffusers import (
|
48 |
+
AutoencoderKL,
|
49 |
+
DDPMScheduler,
|
50 |
+
DiffusionPipeline,
|
51 |
+
DPMSolverMultistepScheduler,
|
52 |
+
StableDiffusionPipeline,
|
53 |
+
UNet2DConditionModel,
|
54 |
+
)
|
55 |
+
from diffusers.loaders import (
|
56 |
+
LoraLoaderMixin,
|
57 |
+
text_encoder_lora_state_dict,
|
58 |
+
)
|
59 |
+
from diffusers.models.attention_processor import (
|
60 |
+
AttnAddedKVProcessor,
|
61 |
+
AttnAddedKVProcessor2_0,
|
62 |
+
LoRAAttnAddedKVProcessor,
|
63 |
+
LoRAAttnProcessor,
|
64 |
+
LoRAAttnProcessor2_0,
|
65 |
+
SlicedAttnAddedKVProcessor,
|
66 |
+
)
|
67 |
+
from diffusers.optimization import get_scheduler
|
68 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
69 |
+
from diffusers.utils.import_utils import is_xformers_available
|
70 |
+
|
71 |
+
|
72 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
73 |
+
check_min_version("0.20.0.dev0")
|
74 |
+
|
75 |
+
logger = get_logger(__name__)
|
76 |
+
|
77 |
+
|
78 |
+
def save_model_card(
|
79 |
+
repo_id: str,
|
80 |
+
images=None,
|
81 |
+
base_model=str,
|
82 |
+
train_text_encoder=False,
|
83 |
+
prompt=str,
|
84 |
+
repo_folder=None,
|
85 |
+
pipeline: DiffusionPipeline = None,
|
86 |
+
):
|
87 |
+
img_str = ""
|
88 |
+
for i, image in enumerate(images):
|
89 |
+
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
90 |
+
img_str += f"\n"
|
91 |
+
|
92 |
+
yaml = f"""
|
93 |
+
---
|
94 |
+
license: creativeml-openrail-m
|
95 |
+
base_model: {base_model}
|
96 |
+
instance_prompt: {prompt}
|
97 |
+
tags:
|
98 |
+
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
|
99 |
+
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
|
100 |
+
- text-to-image
|
101 |
+
- diffusers
|
102 |
+
- lora
|
103 |
+
inference: true
|
104 |
+
---
|
105 |
+
"""
|
106 |
+
model_card = f"""
|
107 |
+
# LoRA DreamBooth - {repo_id}
|
108 |
+
|
109 |
+
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
|
110 |
+
{img_str}
|
111 |
+
|
112 |
+
LoRA for the text encoder was enabled: {train_text_encoder}.
|
113 |
+
"""
|
114 |
+
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
115 |
+
f.write(yaml + model_card)
|
116 |
+
|
117 |
+
|
118 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
119 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
120 |
+
pretrained_model_name_or_path,
|
121 |
+
subfolder="text_encoder",
|
122 |
+
revision=revision,
|
123 |
+
)
|
124 |
+
model_class = text_encoder_config.architectures[0]
|
125 |
+
|
126 |
+
if model_class == "CLIPTextModel":
|
127 |
+
from transformers import CLIPTextModel
|
128 |
+
|
129 |
+
return CLIPTextModel
|
130 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
131 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
132 |
+
|
133 |
+
return RobertaSeriesModelWithTransformation
|
134 |
+
elif model_class == "T5EncoderModel":
|
135 |
+
from transformers import T5EncoderModel
|
136 |
+
|
137 |
+
return T5EncoderModel
|
138 |
+
else:
|
139 |
+
raise ValueError(f"{model_class} is not supported.")
|
140 |
+
|
141 |
+
|
142 |
+
def parse_args(input_args=None):
|
143 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
144 |
+
parser.add_argument(
|
145 |
+
"--pretrained_model_name_or_path",
|
146 |
+
type=str,
|
147 |
+
default=None,
|
148 |
+
required=True,
|
149 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--revision",
|
153 |
+
type=str,
|
154 |
+
default=None,
|
155 |
+
required=False,
|
156 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
157 |
+
)
|
158 |
+
parser.add_argument(
|
159 |
+
"--tokenizer_name",
|
160 |
+
type=str,
|
161 |
+
default=None,
|
162 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--instance_data_dir",
|
166 |
+
type=str,
|
167 |
+
default=None,
|
168 |
+
required=True,
|
169 |
+
help="A folder containing the training data of instance images.",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--class_data_dir",
|
173 |
+
type=str,
|
174 |
+
default=None,
|
175 |
+
required=False,
|
176 |
+
help="A folder containing the training data of class images.",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--instance_prompt",
|
180 |
+
type=str,
|
181 |
+
default=None,
|
182 |
+
required=True,
|
183 |
+
help="The prompt with identifier specifying the instance",
|
184 |
+
)
|
185 |
+
parser.add_argument(
|
186 |
+
"--class_prompt",
|
187 |
+
type=str,
|
188 |
+
default=None,
|
189 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"--validation_prompt",
|
193 |
+
type=str,
|
194 |
+
default=None,
|
195 |
+
help="A prompt that is used during validation to verify that the model is learning.",
|
196 |
+
)
|
197 |
+
parser.add_argument(
|
198 |
+
"--num_validation_images",
|
199 |
+
type=int,
|
200 |
+
default=4,
|
201 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
202 |
+
)
|
203 |
+
parser.add_argument(
|
204 |
+
"--validation_epochs",
|
205 |
+
type=int,
|
206 |
+
default=50,
|
207 |
+
help=(
|
208 |
+
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
209 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
210 |
+
),
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--with_prior_preservation",
|
214 |
+
default=False,
|
215 |
+
action="store_true",
|
216 |
+
help="Flag to add prior preservation loss.",
|
217 |
+
)
|
218 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
219 |
+
parser.add_argument(
|
220 |
+
"--num_class_images",
|
221 |
+
type=int,
|
222 |
+
default=100,
|
223 |
+
help=(
|
224 |
+
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
225 |
+
" class_data_dir, additional images will be sampled with class_prompt."
|
226 |
+
),
|
227 |
+
)
|
228 |
+
parser.add_argument(
|
229 |
+
"--output_dir",
|
230 |
+
type=str,
|
231 |
+
default="lora-dreambooth-model",
|
232 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
233 |
+
)
|
234 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
235 |
+
parser.add_argument(
|
236 |
+
"--resolution",
|
237 |
+
type=int,
|
238 |
+
default=512,
|
239 |
+
help=(
|
240 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
241 |
+
" resolution"
|
242 |
+
),
|
243 |
+
)
|
244 |
+
parser.add_argument(
|
245 |
+
"--center_crop",
|
246 |
+
default=False,
|
247 |
+
action="store_true",
|
248 |
+
help=(
|
249 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
250 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
251 |
+
),
|
252 |
+
)
|
253 |
+
parser.add_argument(
|
254 |
+
"--train_text_encoder",
|
255 |
+
action="store_true",
|
256 |
+
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
|
257 |
+
)
|
258 |
+
parser.add_argument(
|
259 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
260 |
+
)
|
261 |
+
parser.add_argument(
|
262 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
263 |
+
)
|
264 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
265 |
+
parser.add_argument(
|
266 |
+
"--max_train_steps",
|
267 |
+
type=int,
|
268 |
+
default=None,
|
269 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
270 |
+
)
|
271 |
+
parser.add_argument(
|
272 |
+
"--checkpointing_steps",
|
273 |
+
type=int,
|
274 |
+
default=500,
|
275 |
+
help=(
|
276 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
277 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
278 |
+
" training using `--resume_from_checkpoint`."
|
279 |
+
),
|
280 |
+
)
|
281 |
+
parser.add_argument(
|
282 |
+
"--checkpoints_total_limit",
|
283 |
+
type=int,
|
284 |
+
default=None,
|
285 |
+
help=("Max number of checkpoints to store."),
|
286 |
+
)
|
287 |
+
parser.add_argument(
|
288 |
+
"--resume_from_checkpoint",
|
289 |
+
type=str,
|
290 |
+
default=None,
|
291 |
+
help=(
|
292 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
293 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
294 |
+
),
|
295 |
+
)
|
296 |
+
parser.add_argument(
|
297 |
+
"--gradient_accumulation_steps",
|
298 |
+
type=int,
|
299 |
+
default=1,
|
300 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
301 |
+
)
|
302 |
+
parser.add_argument(
|
303 |
+
"--gradient_checkpointing",
|
304 |
+
action="store_true",
|
305 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
306 |
+
)
|
307 |
+
parser.add_argument(
|
308 |
+
"--learning_rate",
|
309 |
+
type=float,
|
310 |
+
default=5e-4,
|
311 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
312 |
+
)
|
313 |
+
parser.add_argument(
|
314 |
+
"--scale_lr",
|
315 |
+
action="store_true",
|
316 |
+
default=False,
|
317 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
318 |
+
)
|
319 |
+
parser.add_argument(
|
320 |
+
"--lr_scheduler",
|
321 |
+
type=str,
|
322 |
+
default="constant",
|
323 |
+
help=(
|
324 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
325 |
+
' "constant", "constant_with_warmup"]'
|
326 |
+
),
|
327 |
+
)
|
328 |
+
parser.add_argument(
|
329 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
330 |
+
)
|
331 |
+
parser.add_argument(
|
332 |
+
"--lr_num_cycles",
|
333 |
+
type=int,
|
334 |
+
default=1,
|
335 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
336 |
+
)
|
337 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
338 |
+
parser.add_argument(
|
339 |
+
"--dataloader_num_workers",
|
340 |
+
type=int,
|
341 |
+
default=0,
|
342 |
+
help=(
|
343 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
344 |
+
),
|
345 |
+
)
|
346 |
+
parser.add_argument(
|
347 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
348 |
+
)
|
349 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
350 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
351 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
352 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
353 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
354 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
355 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
356 |
+
parser.add_argument(
|
357 |
+
"--hub_model_id",
|
358 |
+
type=str,
|
359 |
+
default=None,
|
360 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
361 |
+
)
|
362 |
+
parser.add_argument(
|
363 |
+
"--logging_dir",
|
364 |
+
type=str,
|
365 |
+
default="logs",
|
366 |
+
help=(
|
367 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
368 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
369 |
+
),
|
370 |
+
)
|
371 |
+
parser.add_argument(
|
372 |
+
"--allow_tf32",
|
373 |
+
action="store_true",
|
374 |
+
help=(
|
375 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
376 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
377 |
+
),
|
378 |
+
)
|
379 |
+
parser.add_argument(
|
380 |
+
"--report_to",
|
381 |
+
type=str,
|
382 |
+
default="tensorboard",
|
383 |
+
help=(
|
384 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
385 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
386 |
+
),
|
387 |
+
)
|
388 |
+
parser.add_argument(
|
389 |
+
"--mixed_precision",
|
390 |
+
type=str,
|
391 |
+
default=None,
|
392 |
+
choices=["no", "fp16", "bf16"],
|
393 |
+
help=(
|
394 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
395 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
396 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
397 |
+
),
|
398 |
+
)
|
399 |
+
parser.add_argument(
|
400 |
+
"--prior_generation_precision",
|
401 |
+
type=str,
|
402 |
+
default=None,
|
403 |
+
choices=["no", "fp32", "fp16", "bf16"],
|
404 |
+
help=(
|
405 |
+
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
406 |
+
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
407 |
+
),
|
408 |
+
)
|
409 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
410 |
+
parser.add_argument(
|
411 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
412 |
+
)
|
413 |
+
parser.add_argument(
|
414 |
+
"--pre_compute_text_embeddings",
|
415 |
+
action="store_true",
|
416 |
+
help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
|
417 |
+
)
|
418 |
+
parser.add_argument(
|
419 |
+
"--tokenizer_max_length",
|
420 |
+
type=int,
|
421 |
+
default=None,
|
422 |
+
required=False,
|
423 |
+
help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
|
424 |
+
)
|
425 |
+
parser.add_argument(
|
426 |
+
"--text_encoder_use_attention_mask",
|
427 |
+
action="store_true",
|
428 |
+
required=False,
|
429 |
+
help="Whether to use attention mask for the text encoder",
|
430 |
+
)
|
431 |
+
parser.add_argument(
|
432 |
+
"--validation_images",
|
433 |
+
required=False,
|
434 |
+
default=None,
|
435 |
+
nargs="+",
|
436 |
+
help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
|
437 |
+
)
|
438 |
+
parser.add_argument(
|
439 |
+
"--class_labels_conditioning",
|
440 |
+
required=False,
|
441 |
+
default=None,
|
442 |
+
help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
|
443 |
+
)
|
444 |
+
parser.add_argument(
|
445 |
+
"--rank",
|
446 |
+
type=int,
|
447 |
+
default=4,
|
448 |
+
help=("The dimension of the LoRA update matrices."),
|
449 |
+
)
|
450 |
+
|
451 |
+
if input_args is not None:
|
452 |
+
args = parser.parse_args(input_args)
|
453 |
+
else:
|
454 |
+
args = parser.parse_args()
|
455 |
+
|
456 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
457 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
458 |
+
args.local_rank = env_local_rank
|
459 |
+
|
460 |
+
if args.with_prior_preservation:
|
461 |
+
if args.class_data_dir is None:
|
462 |
+
raise ValueError("You must specify a data directory for class images.")
|
463 |
+
if args.class_prompt is None:
|
464 |
+
raise ValueError("You must specify prompt for class images.")
|
465 |
+
else:
|
466 |
+
# logger is not available yet
|
467 |
+
if args.class_data_dir is not None:
|
468 |
+
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
469 |
+
if args.class_prompt is not None:
|
470 |
+
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
471 |
+
|
472 |
+
if args.train_text_encoder and args.pre_compute_text_embeddings:
|
473 |
+
raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")
|
474 |
+
|
475 |
+
return args
|
476 |
+
|
477 |
+
|
478 |
+
class DreamBoothDataset(Dataset):
|
479 |
+
"""
|
480 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
481 |
+
It pre-processes the images and the tokenizes prompts.
|
482 |
+
"""
|
483 |
+
|
484 |
+
def __init__(
|
485 |
+
self,
|
486 |
+
instance_data_root,
|
487 |
+
instance_prompt,
|
488 |
+
tokenizer,
|
489 |
+
class_data_root=None,
|
490 |
+
class_prompt=None,
|
491 |
+
class_num=None,
|
492 |
+
size=512,
|
493 |
+
center_crop=False,
|
494 |
+
encoder_hidden_states=None,
|
495 |
+
class_prompt_encoder_hidden_states=None,
|
496 |
+
tokenizer_max_length=None,
|
497 |
+
):
|
498 |
+
self.size = size
|
499 |
+
self.center_crop = center_crop
|
500 |
+
self.tokenizer = tokenizer
|
501 |
+
self.encoder_hidden_states = encoder_hidden_states
|
502 |
+
self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
|
503 |
+
self.tokenizer_max_length = tokenizer_max_length
|
504 |
+
|
505 |
+
self.instance_data_root = Path(instance_data_root)
|
506 |
+
if not self.instance_data_root.exists():
|
507 |
+
raise ValueError("Instance images root doesn't exists.")
|
508 |
+
|
509 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
510 |
+
self.num_instance_images = len(self.instance_images_path)
|
511 |
+
self.instance_prompt = instance_prompt
|
512 |
+
self._length = self.num_instance_images
|
513 |
+
|
514 |
+
if class_data_root is not None:
|
515 |
+
self.class_data_root = Path(class_data_root)
|
516 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
517 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
518 |
+
if class_num is not None:
|
519 |
+
self.num_class_images = min(len(self.class_images_path), class_num)
|
520 |
+
else:
|
521 |
+
self.num_class_images = len(self.class_images_path)
|
522 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
523 |
+
self.class_prompt = class_prompt
|
524 |
+
else:
|
525 |
+
self.class_data_root = None
|
526 |
+
|
527 |
+
self.image_transforms = transforms.Compose(
|
528 |
+
[
|
529 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
530 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
531 |
+
transforms.ToTensor(),
|
532 |
+
transforms.Normalize([0.5], [0.5]),
|
533 |
+
]
|
534 |
+
)
|
535 |
+
|
536 |
+
def __len__(self):
|
537 |
+
return self._length
|
538 |
+
|
539 |
+
def __getitem__(self, index):
|
540 |
+
example = {}
|
541 |
+
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
542 |
+
instance_image = exif_transpose(instance_image)
|
543 |
+
|
544 |
+
if not instance_image.mode == "RGB":
|
545 |
+
instance_image = instance_image.convert("RGB")
|
546 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
547 |
+
|
548 |
+
if self.encoder_hidden_states is not None:
|
549 |
+
example["instance_prompt_ids"] = self.encoder_hidden_states
|
550 |
+
else:
|
551 |
+
text_inputs = tokenize_prompt(
|
552 |
+
self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
|
553 |
+
)
|
554 |
+
example["instance_prompt_ids"] = text_inputs.input_ids
|
555 |
+
example["instance_attention_mask"] = text_inputs.attention_mask
|
556 |
+
|
557 |
+
if self.class_data_root:
|
558 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
559 |
+
class_image = exif_transpose(class_image)
|
560 |
+
|
561 |
+
if not class_image.mode == "RGB":
|
562 |
+
class_image = class_image.convert("RGB")
|
563 |
+
example["class_images"] = self.image_transforms(class_image)
|
564 |
+
|
565 |
+
if self.class_prompt_encoder_hidden_states is not None:
|
566 |
+
example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
|
567 |
+
else:
|
568 |
+
class_text_inputs = tokenize_prompt(
|
569 |
+
self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
|
570 |
+
)
|
571 |
+
example["class_prompt_ids"] = class_text_inputs.input_ids
|
572 |
+
example["class_attention_mask"] = class_text_inputs.attention_mask
|
573 |
+
|
574 |
+
return example
|
575 |
+
|
576 |
+
|
577 |
+
def collate_fn(examples, with_prior_preservation=False):
|
578 |
+
has_attention_mask = "instance_attention_mask" in examples[0]
|
579 |
+
|
580 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
581 |
+
pixel_values = [example["instance_images"] for example in examples]
|
582 |
+
|
583 |
+
if has_attention_mask:
|
584 |
+
attention_mask = [example["instance_attention_mask"] for example in examples]
|
585 |
+
|
586 |
+
# Concat class and instance examples for prior preservation.
|
587 |
+
# We do this to avoid doing two forward passes.
|
588 |
+
if with_prior_preservation:
|
589 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
590 |
+
pixel_values += [example["class_images"] for example in examples]
|
591 |
+
if has_attention_mask:
|
592 |
+
attention_mask += [example["class_attention_mask"] for example in examples]
|
593 |
+
|
594 |
+
pixel_values = torch.stack(pixel_values)
|
595 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
596 |
+
|
597 |
+
input_ids = torch.cat(input_ids, dim=0)
|
598 |
+
|
599 |
+
batch = {
|
600 |
+
"input_ids": input_ids,
|
601 |
+
"pixel_values": pixel_values,
|
602 |
+
}
|
603 |
+
|
604 |
+
if has_attention_mask:
|
605 |
+
batch["attention_mask"] = attention_mask
|
606 |
+
|
607 |
+
return batch
|
608 |
+
|
609 |
+
|
610 |
+
class PromptDataset(Dataset):
|
611 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
612 |
+
|
613 |
+
def __init__(self, prompt, num_samples):
|
614 |
+
self.prompt = prompt
|
615 |
+
self.num_samples = num_samples
|
616 |
+
|
617 |
+
def __len__(self):
|
618 |
+
return self.num_samples
|
619 |
+
|
620 |
+
def __getitem__(self, index):
|
621 |
+
example = {}
|
622 |
+
example["prompt"] = self.prompt
|
623 |
+
example["index"] = index
|
624 |
+
return example
|
625 |
+
|
626 |
+
|
627 |
+
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
|
628 |
+
if tokenizer_max_length is not None:
|
629 |
+
max_length = tokenizer_max_length
|
630 |
+
else:
|
631 |
+
max_length = tokenizer.model_max_length
|
632 |
+
|
633 |
+
text_inputs = tokenizer(
|
634 |
+
prompt,
|
635 |
+
truncation=True,
|
636 |
+
padding="max_length",
|
637 |
+
max_length=max_length,
|
638 |
+
return_tensors="pt",
|
639 |
+
)
|
640 |
+
|
641 |
+
return text_inputs
|
642 |
+
|
643 |
+
|
644 |
+
def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
|
645 |
+
text_input_ids = input_ids.to(text_encoder.device)
|
646 |
+
|
647 |
+
if text_encoder_use_attention_mask:
|
648 |
+
attention_mask = attention_mask.to(text_encoder.device)
|
649 |
+
else:
|
650 |
+
attention_mask = None
|
651 |
+
|
652 |
+
prompt_embeds = text_encoder(
|
653 |
+
text_input_ids,
|
654 |
+
attention_mask=attention_mask,
|
655 |
+
)
|
656 |
+
prompt_embeds = prompt_embeds[0]
|
657 |
+
|
658 |
+
return prompt_embeds
|
659 |
+
|
660 |
+
|
661 |
+
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
|
662 |
+
r"""
|
663 |
+
Returns:
|
664 |
+
a state dict containing just the attention processor parameters.
|
665 |
+
"""
|
666 |
+
attn_processors = unet.attn_processors
|
667 |
+
|
668 |
+
attn_processors_state_dict = {}
|
669 |
+
|
670 |
+
for attn_processor_key, attn_processor in attn_processors.items():
|
671 |
+
for parameter_key, parameter in attn_processor.state_dict().items():
|
672 |
+
attn_processors_state_dict[f"{attn_processor_key}.{parameter_key}"] = parameter
|
673 |
+
|
674 |
+
return attn_processors_state_dict
|
675 |
+
|
676 |
+
|
677 |
+
def main(args):
|
678 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
679 |
+
|
680 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
681 |
+
|
682 |
+
accelerator = Accelerator(
|
683 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
684 |
+
mixed_precision=args.mixed_precision,
|
685 |
+
log_with=args.report_to,
|
686 |
+
project_config=accelerator_project_config,
|
687 |
+
)
|
688 |
+
|
689 |
+
if args.report_to == "wandb":
|
690 |
+
if not is_wandb_available():
|
691 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
692 |
+
import wandb
|
693 |
+
|
694 |
+
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
695 |
+
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
696 |
+
# TODO (sayakpaul): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
697 |
+
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
698 |
+
raise ValueError(
|
699 |
+
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
700 |
+
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
701 |
+
)
|
702 |
+
|
703 |
+
# Make one log on every process with the configuration for debugging.
|
704 |
+
logging.basicConfig(
|
705 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
706 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
707 |
+
level=logging.INFO,
|
708 |
+
)
|
709 |
+
logger.info(accelerator.state, main_process_only=False)
|
710 |
+
if accelerator.is_local_main_process:
|
711 |
+
transformers.utils.logging.set_verbosity_warning()
|
712 |
+
diffusers.utils.logging.set_verbosity_info()
|
713 |
+
else:
|
714 |
+
transformers.utils.logging.set_verbosity_error()
|
715 |
+
diffusers.utils.logging.set_verbosity_error()
|
716 |
+
|
717 |
+
# If passed along, set the training seed now.
|
718 |
+
if args.seed is not None:
|
719 |
+
set_seed(args.seed)
|
720 |
+
|
721 |
+
# Generate class images if prior preservation is enabled.
|
722 |
+
if args.with_prior_preservation:
|
723 |
+
class_images_dir = Path(args.class_data_dir)
|
724 |
+
if not class_images_dir.exists():
|
725 |
+
class_images_dir.mkdir(parents=True)
|
726 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
727 |
+
|
728 |
+
if cur_class_images < args.num_class_images:
|
729 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
730 |
+
if args.prior_generation_precision == "fp32":
|
731 |
+
torch_dtype = torch.float32
|
732 |
+
elif args.prior_generation_precision == "fp16":
|
733 |
+
torch_dtype = torch.float16
|
734 |
+
elif args.prior_generation_precision == "bf16":
|
735 |
+
torch_dtype = torch.bfloat16
|
736 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
737 |
+
args.pretrained_model_name_or_path,
|
738 |
+
torch_dtype=torch_dtype,
|
739 |
+
safety_checker=None,
|
740 |
+
revision=args.revision,
|
741 |
+
)
|
742 |
+
pipeline.set_progress_bar_config(disable=True)
|
743 |
+
|
744 |
+
num_new_images = args.num_class_images - cur_class_images
|
745 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
746 |
+
|
747 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
748 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
749 |
+
|
750 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
751 |
+
pipeline.to(accelerator.device)
|
752 |
+
|
753 |
+
for example in tqdm(
|
754 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
755 |
+
):
|
756 |
+
images = pipeline(example["prompt"]).images
|
757 |
+
|
758 |
+
for i, image in enumerate(images):
|
759 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
760 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
761 |
+
image.save(image_filename)
|
762 |
+
|
763 |
+
del pipeline
|
764 |
+
if torch.cuda.is_available():
|
765 |
+
torch.cuda.empty_cache()
|
766 |
+
|
767 |
+
# Handle the repository creation
|
768 |
+
if accelerator.is_main_process:
|
769 |
+
if args.output_dir is not None:
|
770 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
771 |
+
|
772 |
+
if args.push_to_hub:
|
773 |
+
repo_id = create_repo(
|
774 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
775 |
+
).repo_id
|
776 |
+
|
777 |
+
# Load the tokenizer
|
778 |
+
if args.tokenizer_name:
|
779 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
780 |
+
elif args.pretrained_model_name_or_path:
|
781 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
782 |
+
args.pretrained_model_name_or_path,
|
783 |
+
subfolder="tokenizer",
|
784 |
+
revision=args.revision,
|
785 |
+
use_fast=False,
|
786 |
+
)
|
787 |
+
|
788 |
+
# import correct text encoder class
|
789 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
790 |
+
|
791 |
+
# Load scheduler and models
|
792 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
793 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
794 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
795 |
+
)
|
796 |
+
try:
|
797 |
+
vae = AutoencoderKL.from_pretrained(
|
798 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
|
799 |
+
)
|
800 |
+
except OSError:
|
801 |
+
# IF does not have a VAE so let's just set it to None
|
802 |
+
# We don't have to error out here
|
803 |
+
vae = None
|
804 |
+
|
805 |
+
unet = UNet2DConditionModel.from_pretrained(
|
806 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
807 |
+
)
|
808 |
+
|
809 |
+
# We only train the additional adapter LoRA layers
|
810 |
+
if vae is not None:
|
811 |
+
vae.requires_grad_(False)
|
812 |
+
text_encoder.requires_grad_(False)
|
813 |
+
unet.requires_grad_(False)
|
814 |
+
|
815 |
+
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
|
816 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
817 |
+
weight_dtype = torch.float32
|
818 |
+
if accelerator.mixed_precision == "fp16":
|
819 |
+
weight_dtype = torch.float16
|
820 |
+
elif accelerator.mixed_precision == "bf16":
|
821 |
+
weight_dtype = torch.bfloat16
|
822 |
+
|
823 |
+
# Move unet, vae and text_encoder to device and cast to weight_dtype
|
824 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
825 |
+
if vae is not None:
|
826 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
827 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
828 |
+
|
829 |
+
if args.enable_xformers_memory_efficient_attention:
|
830 |
+
if is_xformers_available():
|
831 |
+
import xformers
|
832 |
+
|
833 |
+
xformers_version = version.parse(xformers.__version__)
|
834 |
+
if xformers_version == version.parse("0.0.16"):
|
835 |
+
logger.warn(
|
836 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
837 |
+
)
|
838 |
+
unet.enable_xformers_memory_efficient_attention()
|
839 |
+
else:
|
840 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
841 |
+
|
842 |
+
if args.gradient_checkpointing:
|
843 |
+
unet.enable_gradient_checkpointing()
|
844 |
+
if args.train_text_encoder:
|
845 |
+
text_encoder.gradient_checkpointing_enable()
|
846 |
+
|
847 |
+
# now we will add new LoRA weights to the attention layers
|
848 |
+
# It's important to realize here how many attention weights will be added and of which sizes
|
849 |
+
# The sizes of the attention layers consist only of two different variables:
|
850 |
+
# 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
|
851 |
+
# 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.
|
852 |
+
|
853 |
+
# Let's first see how many attention processors we will have to set.
|
854 |
+
# For Stable Diffusion, it should be equal to:
|
855 |
+
# - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
|
856 |
+
# - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
|
857 |
+
# - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18
|
858 |
+
# => 32 layers
|
859 |
+
|
860 |
+
# Set correct lora layers
|
861 |
+
unet_lora_attn_procs = {}
|
862 |
+
unet_lora_parameters = []
|
863 |
+
for name, attn_processor in unet.attn_processors.items():
|
864 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
865 |
+
if name.startswith("mid_block"):
|
866 |
+
hidden_size = unet.config.block_out_channels[-1]
|
867 |
+
elif name.startswith("up_blocks"):
|
868 |
+
block_id = int(name[len("up_blocks.")])
|
869 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
870 |
+
elif name.startswith("down_blocks"):
|
871 |
+
block_id = int(name[len("down_blocks.")])
|
872 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
873 |
+
|
874 |
+
if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
|
875 |
+
lora_attn_processor_class = LoRAAttnAddedKVProcessor
|
876 |
+
else:
|
877 |
+
lora_attn_processor_class = (
|
878 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
879 |
+
)
|
880 |
+
|
881 |
+
module = lora_attn_processor_class(
|
882 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.rank
|
883 |
+
)
|
884 |
+
unet_lora_attn_procs[name] = module
|
885 |
+
unet_lora_parameters.extend(module.parameters())
|
886 |
+
|
887 |
+
unet.set_attn_processor(unet_lora_attn_procs)
|
888 |
+
|
889 |
+
# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
|
890 |
+
# So, instead, we monkey-patch the forward calls of its attention-blocks.
|
891 |
+
if args.train_text_encoder:
|
892 |
+
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
|
893 |
+
text_lora_parameters = LoraLoaderMixin._modify_text_encoder(text_encoder, dtype=torch.float32, rank=args.rank)
|
894 |
+
|
895 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
896 |
+
def save_model_hook(models, weights, output_dir):
|
897 |
+
# there are only two options here. Either are just the unet attn processor layers
|
898 |
+
# or there are the unet and text encoder atten layers
|
899 |
+
unet_lora_layers_to_save = None
|
900 |
+
text_encoder_lora_layers_to_save = None
|
901 |
+
|
902 |
+
for model in models:
|
903 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
904 |
+
unet_lora_layers_to_save = unet_attn_processors_state_dict(model)
|
905 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
|
906 |
+
text_encoder_lora_layers_to_save = text_encoder_lora_state_dict(model)
|
907 |
+
else:
|
908 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
909 |
+
|
910 |
+
# make sure to pop weight so that corresponding model is not saved again
|
911 |
+
weights.pop()
|
912 |
+
|
913 |
+
LoraLoaderMixin.save_lora_weights(
|
914 |
+
output_dir,
|
915 |
+
unet_lora_layers=unet_lora_layers_to_save,
|
916 |
+
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
917 |
+
)
|
918 |
+
|
919 |
+
def load_model_hook(models, input_dir):
|
920 |
+
unet_ = None
|
921 |
+
text_encoder_ = None
|
922 |
+
|
923 |
+
while len(models) > 0:
|
924 |
+
model = models.pop()
|
925 |
+
|
926 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
927 |
+
unet_ = model
|
928 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
|
929 |
+
text_encoder_ = model
|
930 |
+
else:
|
931 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
932 |
+
|
933 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
934 |
+
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
|
935 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
936 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
937 |
+
)
|
938 |
+
|
939 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
940 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
941 |
+
|
942 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
943 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
944 |
+
if args.allow_tf32:
|
945 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
946 |
+
|
947 |
+
if args.scale_lr:
|
948 |
+
args.learning_rate = (
|
949 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
950 |
+
)
|
951 |
+
|
952 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
953 |
+
if args.use_8bit_adam:
|
954 |
+
try:
|
955 |
+
import bitsandbytes as bnb
|
956 |
+
except ImportError:
|
957 |
+
raise ImportError(
|
958 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
959 |
+
)
|
960 |
+
|
961 |
+
optimizer_class = bnb.optim.AdamW8bit
|
962 |
+
else:
|
963 |
+
optimizer_class = torch.optim.AdamW
|
964 |
+
|
965 |
+
# Optimizer creation
|
966 |
+
params_to_optimize = (
|
967 |
+
itertools.chain(unet_lora_parameters, text_lora_parameters)
|
968 |
+
if args.train_text_encoder
|
969 |
+
else unet_lora_parameters
|
970 |
+
)
|
971 |
+
optimizer = optimizer_class(
|
972 |
+
params_to_optimize,
|
973 |
+
lr=args.learning_rate,
|
974 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
975 |
+
weight_decay=args.adam_weight_decay,
|
976 |
+
eps=args.adam_epsilon,
|
977 |
+
)
|
978 |
+
|
979 |
+
if args.pre_compute_text_embeddings:
|
980 |
+
|
981 |
+
def compute_text_embeddings(prompt):
|
982 |
+
with torch.no_grad():
|
983 |
+
text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
|
984 |
+
prompt_embeds = encode_prompt(
|
985 |
+
text_encoder,
|
986 |
+
text_inputs.input_ids,
|
987 |
+
text_inputs.attention_mask,
|
988 |
+
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
|
989 |
+
)
|
990 |
+
|
991 |
+
return prompt_embeds
|
992 |
+
|
993 |
+
pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
|
994 |
+
validation_prompt_negative_prompt_embeds = compute_text_embeddings("")
|
995 |
+
|
996 |
+
if args.validation_prompt is not None:
|
997 |
+
validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
|
998 |
+
else:
|
999 |
+
validation_prompt_encoder_hidden_states = None
|
1000 |
+
|
1001 |
+
if args.class_prompt is not None:
|
1002 |
+
pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
|
1003 |
+
else:
|
1004 |
+
pre_computed_class_prompt_encoder_hidden_states = None
|
1005 |
+
|
1006 |
+
text_encoder = None
|
1007 |
+
tokenizer = None
|
1008 |
+
|
1009 |
+
gc.collect()
|
1010 |
+
torch.cuda.empty_cache()
|
1011 |
+
else:
|
1012 |
+
pre_computed_encoder_hidden_states = None
|
1013 |
+
validation_prompt_encoder_hidden_states = None
|
1014 |
+
validation_prompt_negative_prompt_embeds = None
|
1015 |
+
pre_computed_class_prompt_encoder_hidden_states = None
|
1016 |
+
|
1017 |
+
# Dataset and DataLoaders creation:
|
1018 |
+
train_dataset = DreamBoothDataset(
|
1019 |
+
instance_data_root=args.instance_data_dir,
|
1020 |
+
instance_prompt=args.instance_prompt,
|
1021 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
1022 |
+
class_prompt=args.class_prompt,
|
1023 |
+
class_num=args.num_class_images,
|
1024 |
+
tokenizer=tokenizer,
|
1025 |
+
size=args.resolution,
|
1026 |
+
center_crop=args.center_crop,
|
1027 |
+
encoder_hidden_states=pre_computed_encoder_hidden_states,
|
1028 |
+
class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
|
1029 |
+
tokenizer_max_length=args.tokenizer_max_length,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
train_dataloader = torch.utils.data.DataLoader(
|
1033 |
+
train_dataset,
|
1034 |
+
batch_size=args.train_batch_size,
|
1035 |
+
shuffle=True,
|
1036 |
+
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
1037 |
+
num_workers=args.dataloader_num_workers,
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
# Scheduler and math around the number of training steps.
|
1041 |
+
overrode_max_train_steps = False
|
1042 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1043 |
+
if args.max_train_steps is None:
|
1044 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1045 |
+
overrode_max_train_steps = True
|
1046 |
+
|
1047 |
+
lr_scheduler = get_scheduler(
|
1048 |
+
args.lr_scheduler,
|
1049 |
+
optimizer=optimizer,
|
1050 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
1051 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
1052 |
+
num_cycles=args.lr_num_cycles,
|
1053 |
+
power=args.lr_power,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
# Prepare everything with our `accelerator`.
|
1057 |
+
if args.train_text_encoder:
|
1058 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1059 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
1060 |
+
)
|
1061 |
+
else:
|
1062 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1063 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
1067 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1068 |
+
if overrode_max_train_steps:
|
1069 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1070 |
+
# Afterwards we recalculate our number of training epochs
|
1071 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
1072 |
+
|
1073 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
1074 |
+
# The trackers initializes automatically on the main process.
|
1075 |
+
if accelerator.is_main_process:
|
1076 |
+
tracker_config = vars(copy.deepcopy(args))
|
1077 |
+
tracker_config.pop("validation_images")
|
1078 |
+
accelerator.init_trackers("dreambooth-lora", config=tracker_config)
|
1079 |
+
|
1080 |
+
# Train!
|
1081 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
1082 |
+
|
1083 |
+
logger.info("***** Running training *****")
|
1084 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
1085 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
1086 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
1087 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
1088 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
1089 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
1090 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
1091 |
+
global_step = 0
|
1092 |
+
first_epoch = 0
|
1093 |
+
|
1094 |
+
# Potentially load in the weights and states from a previous save
|
1095 |
+
if args.resume_from_checkpoint:
|
1096 |
+
if args.resume_from_checkpoint != "latest":
|
1097 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1098 |
+
else:
|
1099 |
+
# Get the mos recent checkpoint
|
1100 |
+
dirs = os.listdir(args.output_dir)
|
1101 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1102 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1103 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1104 |
+
|
1105 |
+
if path is None:
|
1106 |
+
accelerator.print(
|
1107 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1108 |
+
)
|
1109 |
+
args.resume_from_checkpoint = None
|
1110 |
+
else:
|
1111 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1112 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1113 |
+
global_step = int(path.split("-")[1])
|
1114 |
+
|
1115 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
1116 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
1117 |
+
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
1118 |
+
|
1119 |
+
# Only show the progress bar once on each machine.
|
1120 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
1121 |
+
progress_bar.set_description("Steps")
|
1122 |
+
|
1123 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
1124 |
+
unet.train()
|
1125 |
+
if args.train_text_encoder:
|
1126 |
+
text_encoder.train()
|
1127 |
+
for step, batch in enumerate(train_dataloader):
|
1128 |
+
# Skip steps until we reach the resumed step
|
1129 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
1130 |
+
if step % args.gradient_accumulation_steps == 0:
|
1131 |
+
progress_bar.update(1)
|
1132 |
+
continue
|
1133 |
+
|
1134 |
+
with accelerator.accumulate(unet):
|
1135 |
+
pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
|
1136 |
+
|
1137 |
+
if vae is not None:
|
1138 |
+
# Convert images to latent space
|
1139 |
+
model_input = vae.encode(pixel_values).latent_dist.sample()
|
1140 |
+
model_input = model_input * vae.config.scaling_factor
|
1141 |
+
else:
|
1142 |
+
model_input = pixel_values
|
1143 |
+
|
1144 |
+
# Sample noise that we'll add to the latents
|
1145 |
+
noise = torch.randn_like(model_input)
|
1146 |
+
bsz, channels, height, width = model_input.shape
|
1147 |
+
# Sample a random timestep for each image
|
1148 |
+
timesteps = torch.randint(
|
1149 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
1150 |
+
)
|
1151 |
+
timesteps = timesteps.long()
|
1152 |
+
|
1153 |
+
# Add noise to the model input according to the noise magnitude at each timestep
|
1154 |
+
# (this is the forward diffusion process)
|
1155 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
1156 |
+
|
1157 |
+
# Get the text embedding for conditioning
|
1158 |
+
if args.pre_compute_text_embeddings:
|
1159 |
+
encoder_hidden_states = batch["input_ids"]
|
1160 |
+
else:
|
1161 |
+
encoder_hidden_states = encode_prompt(
|
1162 |
+
text_encoder,
|
1163 |
+
batch["input_ids"],
|
1164 |
+
batch["attention_mask"],
|
1165 |
+
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
if accelerator.unwrap_model(unet).config.in_channels == channels * 2:
|
1169 |
+
noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
|
1170 |
+
|
1171 |
+
if args.class_labels_conditioning == "timesteps":
|
1172 |
+
class_labels = timesteps
|
1173 |
+
else:
|
1174 |
+
class_labels = None
|
1175 |
+
|
1176 |
+
# Predict the noise residual
|
1177 |
+
model_pred = unet(
|
1178 |
+
noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
|
1179 |
+
).sample
|
1180 |
+
|
1181 |
+
# if model predicts variance, throw away the prediction. we will only train on the
|
1182 |
+
# simplified training objective. This means that all schedulers using the fine tuned
|
1183 |
+
# model must be configured to use one of the fixed variance variance types.
|
1184 |
+
if model_pred.shape[1] == 6:
|
1185 |
+
model_pred, _ = torch.chunk(model_pred, 2, dim=1)
|
1186 |
+
|
1187 |
+
# Get the target for loss depending on the prediction type
|
1188 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1189 |
+
target = noise
|
1190 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1191 |
+
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
|
1192 |
+
else:
|
1193 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1194 |
+
|
1195 |
+
if args.with_prior_preservation:
|
1196 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
1197 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
1198 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
1199 |
+
|
1200 |
+
# Compute instance loss
|
1201 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1202 |
+
|
1203 |
+
# Compute prior loss
|
1204 |
+
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
1205 |
+
|
1206 |
+
# Add the prior loss to the instance loss.
|
1207 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
1208 |
+
else:
|
1209 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1210 |
+
|
1211 |
+
accelerator.backward(loss)
|
1212 |
+
if accelerator.sync_gradients:
|
1213 |
+
params_to_clip = (
|
1214 |
+
itertools.chain(unet_lora_parameters, text_lora_parameters)
|
1215 |
+
if args.train_text_encoder
|
1216 |
+
else unet_lora_parameters
|
1217 |
+
)
|
1218 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1219 |
+
optimizer.step()
|
1220 |
+
lr_scheduler.step()
|
1221 |
+
optimizer.zero_grad()
|
1222 |
+
|
1223 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1224 |
+
if accelerator.sync_gradients:
|
1225 |
+
progress_bar.update(1)
|
1226 |
+
global_step += 1
|
1227 |
+
|
1228 |
+
if accelerator.is_main_process:
|
1229 |
+
if global_step % args.checkpointing_steps == 0:
|
1230 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1231 |
+
if args.checkpoints_total_limit is not None:
|
1232 |
+
checkpoints = os.listdir(args.output_dir)
|
1233 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1234 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1235 |
+
|
1236 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1237 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1238 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1239 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1240 |
+
|
1241 |
+
logger.info(
|
1242 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1243 |
+
)
|
1244 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1245 |
+
|
1246 |
+
for removing_checkpoint in removing_checkpoints:
|
1247 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1248 |
+
shutil.rmtree(removing_checkpoint)
|
1249 |
+
|
1250 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1251 |
+
accelerator.save_state(save_path)
|
1252 |
+
logger.info(f"Saved state to {save_path}")
|
1253 |
+
|
1254 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1255 |
+
progress_bar.set_postfix(**logs)
|
1256 |
+
accelerator.log(logs, step=global_step)
|
1257 |
+
|
1258 |
+
if global_step >= args.max_train_steps:
|
1259 |
+
break
|
1260 |
+
|
1261 |
+
if accelerator.is_main_process:
|
1262 |
+
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
|
1263 |
+
logger.info(
|
1264 |
+
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
1265 |
+
f" {args.validation_prompt}."
|
1266 |
+
)
|
1267 |
+
# create pipeline
|
1268 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
1269 |
+
args.pretrained_model_name_or_path,
|
1270 |
+
unet=accelerator.unwrap_model(unet),
|
1271 |
+
text_encoder=None if args.pre_compute_text_embeddings else accelerator.unwrap_model(text_encoder),
|
1272 |
+
revision=args.revision,
|
1273 |
+
torch_dtype=weight_dtype,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1277 |
+
scheduler_args = {}
|
1278 |
+
|
1279 |
+
if "variance_type" in pipeline.scheduler.config:
|
1280 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1281 |
+
|
1282 |
+
if variance_type in ["learned", "learned_range"]:
|
1283 |
+
variance_type = "fixed_small"
|
1284 |
+
|
1285 |
+
scheduler_args["variance_type"] = variance_type
|
1286 |
+
|
1287 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
1288 |
+
pipeline.scheduler.config, **scheduler_args
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
pipeline = pipeline.to(accelerator.device)
|
1292 |
+
pipeline.set_progress_bar_config(disable=True)
|
1293 |
+
|
1294 |
+
# run inference
|
1295 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
1296 |
+
if args.pre_compute_text_embeddings:
|
1297 |
+
pipeline_args = {
|
1298 |
+
"prompt_embeds": validation_prompt_encoder_hidden_states,
|
1299 |
+
"negative_prompt_embeds": validation_prompt_negative_prompt_embeds,
|
1300 |
+
}
|
1301 |
+
else:
|
1302 |
+
pipeline_args = {"prompt": args.validation_prompt}
|
1303 |
+
|
1304 |
+
if args.validation_images is None:
|
1305 |
+
images = []
|
1306 |
+
for _ in range(args.num_validation_images):
|
1307 |
+
with torch.cuda.amp.autocast():
|
1308 |
+
image = pipeline(**pipeline_args, generator=generator).images[0]
|
1309 |
+
images.append(image)
|
1310 |
+
else:
|
1311 |
+
images = []
|
1312 |
+
for image in args.validation_images:
|
1313 |
+
image = Image.open(image)
|
1314 |
+
with torch.cuda.amp.autocast():
|
1315 |
+
image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
|
1316 |
+
images.append(image)
|
1317 |
+
|
1318 |
+
for tracker in accelerator.trackers:
|
1319 |
+
if tracker.name == "tensorboard":
|
1320 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
1321 |
+
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
1322 |
+
if tracker.name == "wandb":
|
1323 |
+
tracker.log(
|
1324 |
+
{
|
1325 |
+
"validation": [
|
1326 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1327 |
+
for i, image in enumerate(images)
|
1328 |
+
]
|
1329 |
+
}
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
del pipeline
|
1333 |
+
torch.cuda.empty_cache()
|
1334 |
+
|
1335 |
+
# Save the lora layers
|
1336 |
+
accelerator.wait_for_everyone()
|
1337 |
+
if accelerator.is_main_process:
|
1338 |
+
unet = accelerator.unwrap_model(unet)
|
1339 |
+
unet = unet.to(torch.float32)
|
1340 |
+
unet_lora_layers = unet_attn_processors_state_dict(unet)
|
1341 |
+
|
1342 |
+
if text_encoder is not None and args.train_text_encoder:
|
1343 |
+
text_encoder = accelerator.unwrap_model(text_encoder)
|
1344 |
+
text_encoder = text_encoder.to(torch.float32)
|
1345 |
+
text_encoder_lora_layers = text_encoder_lora_state_dict(text_encoder)
|
1346 |
+
else:
|
1347 |
+
text_encoder_lora_layers = None
|
1348 |
+
|
1349 |
+
LoraLoaderMixin.save_lora_weights(
|
1350 |
+
save_directory=args.output_dir,
|
1351 |
+
unet_lora_layers=unet_lora_layers,
|
1352 |
+
text_encoder_lora_layers=text_encoder_lora_layers,
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
# Final inference
|
1356 |
+
# Load previous pipeline
|
1357 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
1358 |
+
args.pretrained_model_name_or_path, revision=args.revision, torch_dtype=weight_dtype
|
1359 |
+
)
|
1360 |
+
|
1361 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1362 |
+
scheduler_args = {}
|
1363 |
+
|
1364 |
+
if "variance_type" in pipeline.scheduler.config:
|
1365 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1366 |
+
|
1367 |
+
if variance_type in ["learned", "learned_range"]:
|
1368 |
+
variance_type = "fixed_small"
|
1369 |
+
|
1370 |
+
scheduler_args["variance_type"] = variance_type
|
1371 |
+
|
1372 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
|
1373 |
+
|
1374 |
+
pipeline = pipeline.to(accelerator.device)
|
1375 |
+
|
1376 |
+
# load attention processors
|
1377 |
+
pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.bin")
|
1378 |
+
|
1379 |
+
# run inference
|
1380 |
+
images = []
|
1381 |
+
if args.validation_prompt and args.num_validation_images > 0:
|
1382 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
1383 |
+
images = [
|
1384 |
+
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
|
1385 |
+
for _ in range(args.num_validation_images)
|
1386 |
+
]
|
1387 |
+
|
1388 |
+
for tracker in accelerator.trackers:
|
1389 |
+
if tracker.name == "tensorboard":
|
1390 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
1391 |
+
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
|
1392 |
+
if tracker.name == "wandb":
|
1393 |
+
tracker.log(
|
1394 |
+
{
|
1395 |
+
"test": [
|
1396 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1397 |
+
for i, image in enumerate(images)
|
1398 |
+
]
|
1399 |
+
}
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
if args.push_to_hub:
|
1403 |
+
save_model_card(
|
1404 |
+
repo_id,
|
1405 |
+
images=images,
|
1406 |
+
base_model=args.pretrained_model_name_or_path,
|
1407 |
+
train_text_encoder=args.train_text_encoder,
|
1408 |
+
prompt=args.instance_prompt,
|
1409 |
+
repo_folder=args.output_dir,
|
1410 |
+
pipeline=pipeline,
|
1411 |
+
)
|
1412 |
+
upload_folder(
|
1413 |
+
repo_id=repo_id,
|
1414 |
+
folder_path=args.output_dir,
|
1415 |
+
commit_message="End of training",
|
1416 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
accelerator.end_training()
|
1420 |
+
|
1421 |
+
|
1422 |
+
if __name__ == "__main__":
|
1423 |
+
args = parse_args()
|
1424 |
+
main(args)
|
train_dreambooth_lora_sdxl.py
ADDED
@@ -0,0 +1,1368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import gc
|
18 |
+
import hashlib
|
19 |
+
import itertools
|
20 |
+
import logging
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import shutil
|
24 |
+
import warnings
|
25 |
+
from pathlib import Path
|
26 |
+
from typing import Dict
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
import torch.nn.functional as F
|
31 |
+
import torch.utils.checkpoint
|
32 |
+
import transformers
|
33 |
+
from accelerate import Accelerator
|
34 |
+
from accelerate.logging import get_logger
|
35 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
36 |
+
from huggingface_hub import create_repo, upload_folder
|
37 |
+
from packaging import version
|
38 |
+
from PIL import Image
|
39 |
+
from PIL.ImageOps import exif_transpose
|
40 |
+
from torch.utils.data import Dataset
|
41 |
+
from torchvision import transforms
|
42 |
+
from tqdm.auto import tqdm
|
43 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
44 |
+
|
45 |
+
import diffusers
|
46 |
+
from diffusers import (
|
47 |
+
AutoencoderKL,
|
48 |
+
DDPMScheduler,
|
49 |
+
DPMSolverMultistepScheduler,
|
50 |
+
StableDiffusionXLPipeline,
|
51 |
+
UNet2DConditionModel,
|
52 |
+
)
|
53 |
+
from diffusers.loaders import LoraLoaderMixin, text_encoder_lora_state_dict
|
54 |
+
from diffusers.models.attention_processor import LoRAAttnProcessor, LoRAAttnProcessor2_0
|
55 |
+
from diffusers.optimization import get_scheduler
|
56 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
57 |
+
from diffusers.utils.import_utils import is_xformers_available
|
58 |
+
|
59 |
+
|
60 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
61 |
+
check_min_version("0.20.0.dev0")
|
62 |
+
|
63 |
+
logger = get_logger(__name__)
|
64 |
+
|
65 |
+
|
66 |
+
def save_model_card(
|
67 |
+
repo_id: str, images=None, base_model=str, train_text_encoder=False, prompt=str, repo_folder=None, vae_path=None
|
68 |
+
):
|
69 |
+
img_str = ""
|
70 |
+
for i, image in enumerate(images):
|
71 |
+
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
72 |
+
img_str += f"\n"
|
73 |
+
|
74 |
+
yaml = f"""
|
75 |
+
---
|
76 |
+
license: openrail++
|
77 |
+
base_model: {base_model}
|
78 |
+
instance_prompt: {prompt}
|
79 |
+
tags:
|
80 |
+
- stable-diffusion-xl
|
81 |
+
- stable-diffusion-xl-diffusers
|
82 |
+
- text-to-image
|
83 |
+
- diffusers
|
84 |
+
- lora
|
85 |
+
inference: true
|
86 |
+
---
|
87 |
+
"""
|
88 |
+
model_card = f"""
|
89 |
+
# LoRA DreamBooth - {repo_id}
|
90 |
+
|
91 |
+
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
|
92 |
+
{img_str}
|
93 |
+
|
94 |
+
LoRA for the text encoder was enabled: {train_text_encoder}.
|
95 |
+
|
96 |
+
Special VAE used for training: {vae_path}.
|
97 |
+
"""
|
98 |
+
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
99 |
+
f.write(yaml + model_card)
|
100 |
+
|
101 |
+
|
102 |
+
def import_model_class_from_model_name_or_path(
|
103 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
104 |
+
):
|
105 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
106 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
107 |
+
)
|
108 |
+
model_class = text_encoder_config.architectures[0]
|
109 |
+
|
110 |
+
if model_class == "CLIPTextModel":
|
111 |
+
from transformers import CLIPTextModel
|
112 |
+
|
113 |
+
return CLIPTextModel
|
114 |
+
elif model_class == "CLIPTextModelWithProjection":
|
115 |
+
from transformers import CLIPTextModelWithProjection
|
116 |
+
|
117 |
+
return CLIPTextModelWithProjection
|
118 |
+
else:
|
119 |
+
raise ValueError(f"{model_class} is not supported.")
|
120 |
+
|
121 |
+
|
122 |
+
def parse_args(input_args=None):
|
123 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
124 |
+
parser.add_argument(
|
125 |
+
"--pretrained_model_name_or_path",
|
126 |
+
type=str,
|
127 |
+
default=None,
|
128 |
+
required=True,
|
129 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--pretrained_vae_model_name_or_path",
|
133 |
+
type=str,
|
134 |
+
default=None,
|
135 |
+
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--revision",
|
139 |
+
type=str,
|
140 |
+
default=None,
|
141 |
+
required=False,
|
142 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--instance_data_dir",
|
146 |
+
type=str,
|
147 |
+
default=None,
|
148 |
+
required=True,
|
149 |
+
help="A folder containing the training data of instance images.",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--class_data_dir",
|
153 |
+
type=str,
|
154 |
+
default=None,
|
155 |
+
required=False,
|
156 |
+
help="A folder containing the training data of class images.",
|
157 |
+
)
|
158 |
+
parser.add_argument(
|
159 |
+
"--instance_prompt",
|
160 |
+
type=str,
|
161 |
+
default=None,
|
162 |
+
required=True,
|
163 |
+
help="The prompt with identifier specifying the instance",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--class_prompt",
|
167 |
+
type=str,
|
168 |
+
default=None,
|
169 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--validation_prompt",
|
173 |
+
type=str,
|
174 |
+
default=None,
|
175 |
+
help="A prompt that is used during validation to verify that the model is learning.",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--num_validation_images",
|
179 |
+
type=int,
|
180 |
+
default=4,
|
181 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--validation_epochs",
|
185 |
+
type=int,
|
186 |
+
default=50,
|
187 |
+
help=(
|
188 |
+
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
189 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
190 |
+
),
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--with_prior_preservation",
|
194 |
+
default=False,
|
195 |
+
action="store_true",
|
196 |
+
help="Flag to add prior preservation loss.",
|
197 |
+
)
|
198 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
199 |
+
parser.add_argument(
|
200 |
+
"--num_class_images",
|
201 |
+
type=int,
|
202 |
+
default=100,
|
203 |
+
help=(
|
204 |
+
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
205 |
+
" class_data_dir, additional images will be sampled with class_prompt."
|
206 |
+
),
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--output_dir",
|
210 |
+
type=str,
|
211 |
+
default="lora-dreambooth-model",
|
212 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
213 |
+
)
|
214 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
215 |
+
parser.add_argument(
|
216 |
+
"--resolution",
|
217 |
+
type=int,
|
218 |
+
default=1024,
|
219 |
+
help=(
|
220 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
221 |
+
" resolution"
|
222 |
+
),
|
223 |
+
)
|
224 |
+
parser.add_argument(
|
225 |
+
"--crops_coords_top_left_h",
|
226 |
+
type=int,
|
227 |
+
default=0,
|
228 |
+
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--crops_coords_top_left_w",
|
232 |
+
type=int,
|
233 |
+
default=0,
|
234 |
+
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
|
235 |
+
)
|
236 |
+
parser.add_argument(
|
237 |
+
"--center_crop",
|
238 |
+
default=False,
|
239 |
+
action="store_true",
|
240 |
+
help=(
|
241 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
242 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
243 |
+
),
|
244 |
+
)
|
245 |
+
parser.add_argument(
|
246 |
+
"--train_text_encoder",
|
247 |
+
action="store_true",
|
248 |
+
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
|
249 |
+
)
|
250 |
+
parser.add_argument(
|
251 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
252 |
+
)
|
253 |
+
parser.add_argument(
|
254 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
255 |
+
)
|
256 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
257 |
+
parser.add_argument(
|
258 |
+
"--max_train_steps",
|
259 |
+
type=int,
|
260 |
+
default=None,
|
261 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
262 |
+
)
|
263 |
+
parser.add_argument(
|
264 |
+
"--checkpointing_steps",
|
265 |
+
type=int,
|
266 |
+
default=500,
|
267 |
+
help=(
|
268 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
269 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
270 |
+
" training using `--resume_from_checkpoint`."
|
271 |
+
),
|
272 |
+
)
|
273 |
+
parser.add_argument(
|
274 |
+
"--checkpoints_total_limit",
|
275 |
+
type=int,
|
276 |
+
default=None,
|
277 |
+
help=("Max number of checkpoints to store."),
|
278 |
+
)
|
279 |
+
parser.add_argument(
|
280 |
+
"--resume_from_checkpoint",
|
281 |
+
type=str,
|
282 |
+
default=None,
|
283 |
+
help=(
|
284 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
285 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
286 |
+
),
|
287 |
+
)
|
288 |
+
parser.add_argument(
|
289 |
+
"--gradient_accumulation_steps",
|
290 |
+
type=int,
|
291 |
+
default=1,
|
292 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
293 |
+
)
|
294 |
+
parser.add_argument(
|
295 |
+
"--gradient_checkpointing",
|
296 |
+
action="store_true",
|
297 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
298 |
+
)
|
299 |
+
parser.add_argument(
|
300 |
+
"--learning_rate",
|
301 |
+
type=float,
|
302 |
+
default=5e-4,
|
303 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
304 |
+
)
|
305 |
+
parser.add_argument(
|
306 |
+
"--scale_lr",
|
307 |
+
action="store_true",
|
308 |
+
default=False,
|
309 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
310 |
+
)
|
311 |
+
parser.add_argument(
|
312 |
+
"--lr_scheduler",
|
313 |
+
type=str,
|
314 |
+
default="constant",
|
315 |
+
help=(
|
316 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
317 |
+
' "constant", "constant_with_warmup"]'
|
318 |
+
),
|
319 |
+
)
|
320 |
+
parser.add_argument(
|
321 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
322 |
+
)
|
323 |
+
parser.add_argument(
|
324 |
+
"--lr_num_cycles",
|
325 |
+
type=int,
|
326 |
+
default=1,
|
327 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
328 |
+
)
|
329 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
330 |
+
parser.add_argument(
|
331 |
+
"--dataloader_num_workers",
|
332 |
+
type=int,
|
333 |
+
default=0,
|
334 |
+
help=(
|
335 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
336 |
+
),
|
337 |
+
)
|
338 |
+
parser.add_argument(
|
339 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
340 |
+
)
|
341 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
342 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
343 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
344 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
345 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
346 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
347 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
348 |
+
parser.add_argument(
|
349 |
+
"--hub_model_id",
|
350 |
+
type=str,
|
351 |
+
default=None,
|
352 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--logging_dir",
|
356 |
+
type=str,
|
357 |
+
default="logs",
|
358 |
+
help=(
|
359 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
360 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
361 |
+
),
|
362 |
+
)
|
363 |
+
parser.add_argument(
|
364 |
+
"--allow_tf32",
|
365 |
+
action="store_true",
|
366 |
+
help=(
|
367 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
368 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
369 |
+
),
|
370 |
+
)
|
371 |
+
parser.add_argument(
|
372 |
+
"--report_to",
|
373 |
+
type=str,
|
374 |
+
default="tensorboard",
|
375 |
+
help=(
|
376 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
377 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
378 |
+
),
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"--mixed_precision",
|
382 |
+
type=str,
|
383 |
+
default=None,
|
384 |
+
choices=["no", "fp16", "bf16"],
|
385 |
+
help=(
|
386 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
387 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
388 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
389 |
+
),
|
390 |
+
)
|
391 |
+
parser.add_argument(
|
392 |
+
"--prior_generation_precision",
|
393 |
+
type=str,
|
394 |
+
default=None,
|
395 |
+
choices=["no", "fp32", "fp16", "bf16"],
|
396 |
+
help=(
|
397 |
+
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
398 |
+
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
399 |
+
),
|
400 |
+
)
|
401 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
402 |
+
parser.add_argument(
|
403 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
404 |
+
)
|
405 |
+
parser.add_argument(
|
406 |
+
"--rank",
|
407 |
+
type=int,
|
408 |
+
default=4,
|
409 |
+
help=("The dimension of the LoRA update matrices."),
|
410 |
+
)
|
411 |
+
|
412 |
+
if input_args is not None:
|
413 |
+
args = parser.parse_args(input_args)
|
414 |
+
else:
|
415 |
+
args = parser.parse_args()
|
416 |
+
|
417 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
418 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
419 |
+
args.local_rank = env_local_rank
|
420 |
+
|
421 |
+
if args.with_prior_preservation:
|
422 |
+
if args.class_data_dir is None:
|
423 |
+
raise ValueError("You must specify a data directory for class images.")
|
424 |
+
if args.class_prompt is None:
|
425 |
+
raise ValueError("You must specify prompt for class images.")
|
426 |
+
else:
|
427 |
+
# logger is not available yet
|
428 |
+
if args.class_data_dir is not None:
|
429 |
+
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
430 |
+
if args.class_prompt is not None:
|
431 |
+
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
432 |
+
|
433 |
+
return args
|
434 |
+
|
435 |
+
|
436 |
+
class DreamBoothDataset(Dataset):
|
437 |
+
"""
|
438 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
439 |
+
It pre-processes the images.
|
440 |
+
"""
|
441 |
+
|
442 |
+
def __init__(
|
443 |
+
self,
|
444 |
+
instance_data_root,
|
445 |
+
class_data_root=None,
|
446 |
+
class_num=None,
|
447 |
+
size=1024,
|
448 |
+
center_crop=False,
|
449 |
+
):
|
450 |
+
self.size = size
|
451 |
+
self.center_crop = center_crop
|
452 |
+
|
453 |
+
self.instance_data_root = Path(instance_data_root)
|
454 |
+
if not self.instance_data_root.exists():
|
455 |
+
raise ValueError("Instance images root doesn't exists.")
|
456 |
+
|
457 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
458 |
+
self.num_instance_images = len(self.instance_images_path)
|
459 |
+
self._length = self.num_instance_images
|
460 |
+
|
461 |
+
if class_data_root is not None:
|
462 |
+
self.class_data_root = Path(class_data_root)
|
463 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
464 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
465 |
+
if class_num is not None:
|
466 |
+
self.num_class_images = min(len(self.class_images_path), class_num)
|
467 |
+
else:
|
468 |
+
self.num_class_images = len(self.class_images_path)
|
469 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
470 |
+
else:
|
471 |
+
self.class_data_root = None
|
472 |
+
|
473 |
+
self.image_transforms = transforms.Compose(
|
474 |
+
[
|
475 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
476 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
477 |
+
transforms.ToTensor(),
|
478 |
+
transforms.Normalize([0.5], [0.5]),
|
479 |
+
]
|
480 |
+
)
|
481 |
+
|
482 |
+
def __len__(self):
|
483 |
+
return self._length
|
484 |
+
|
485 |
+
def __getitem__(self, index):
|
486 |
+
example = {}
|
487 |
+
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
488 |
+
instance_image = exif_transpose(instance_image)
|
489 |
+
|
490 |
+
if not instance_image.mode == "RGB":
|
491 |
+
instance_image = instance_image.convert("RGB")
|
492 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
493 |
+
|
494 |
+
if self.class_data_root:
|
495 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
496 |
+
class_image = exif_transpose(class_image)
|
497 |
+
|
498 |
+
if not class_image.mode == "RGB":
|
499 |
+
class_image = class_image.convert("RGB")
|
500 |
+
example["class_images"] = self.image_transforms(class_image)
|
501 |
+
|
502 |
+
return example
|
503 |
+
|
504 |
+
|
505 |
+
def collate_fn(examples, with_prior_preservation=False):
|
506 |
+
pixel_values = [example["instance_images"] for example in examples]
|
507 |
+
|
508 |
+
# Concat class and instance examples for prior preservation.
|
509 |
+
# We do this to avoid doing two forward passes.
|
510 |
+
if with_prior_preservation:
|
511 |
+
pixel_values += [example["class_images"] for example in examples]
|
512 |
+
|
513 |
+
pixel_values = torch.stack(pixel_values)
|
514 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
515 |
+
|
516 |
+
batch = {"pixel_values": pixel_values}
|
517 |
+
return batch
|
518 |
+
|
519 |
+
|
520 |
+
class PromptDataset(Dataset):
|
521 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
522 |
+
|
523 |
+
def __init__(self, prompt, num_samples):
|
524 |
+
self.prompt = prompt
|
525 |
+
self.num_samples = num_samples
|
526 |
+
|
527 |
+
def __len__(self):
|
528 |
+
return self.num_samples
|
529 |
+
|
530 |
+
def __getitem__(self, index):
|
531 |
+
example = {}
|
532 |
+
example["prompt"] = self.prompt
|
533 |
+
example["index"] = index
|
534 |
+
return example
|
535 |
+
|
536 |
+
|
537 |
+
def tokenize_prompt(tokenizer, prompt):
|
538 |
+
text_inputs = tokenizer(
|
539 |
+
prompt,
|
540 |
+
padding="max_length",
|
541 |
+
max_length=tokenizer.model_max_length,
|
542 |
+
truncation=True,
|
543 |
+
return_tensors="pt",
|
544 |
+
)
|
545 |
+
text_input_ids = text_inputs.input_ids
|
546 |
+
return text_input_ids
|
547 |
+
|
548 |
+
|
549 |
+
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
|
550 |
+
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
|
551 |
+
prompt_embeds_list = []
|
552 |
+
|
553 |
+
for i, text_encoder in enumerate(text_encoders):
|
554 |
+
if tokenizers is not None:
|
555 |
+
tokenizer = tokenizers[i]
|
556 |
+
text_input_ids = tokenize_prompt(tokenizer, prompt)
|
557 |
+
else:
|
558 |
+
assert text_input_ids_list is not None
|
559 |
+
text_input_ids = text_input_ids_list[i]
|
560 |
+
|
561 |
+
prompt_embeds = text_encoder(
|
562 |
+
text_input_ids.to(text_encoder.device),
|
563 |
+
output_hidden_states=True,
|
564 |
+
)
|
565 |
+
|
566 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
567 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
568 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
569 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
570 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
571 |
+
prompt_embeds_list.append(prompt_embeds)
|
572 |
+
|
573 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
574 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
575 |
+
return prompt_embeds, pooled_prompt_embeds
|
576 |
+
|
577 |
+
|
578 |
+
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
|
579 |
+
"""
|
580 |
+
Returns:
|
581 |
+
a state dict containing just the attention processor parameters.
|
582 |
+
"""
|
583 |
+
attn_processors = unet.attn_processors
|
584 |
+
|
585 |
+
attn_processors_state_dict = {}
|
586 |
+
|
587 |
+
for attn_processor_key, attn_processor in attn_processors.items():
|
588 |
+
for parameter_key, parameter in attn_processor.state_dict().items():
|
589 |
+
attn_processors_state_dict[f"{attn_processor_key}.{parameter_key}"] = parameter
|
590 |
+
|
591 |
+
return attn_processors_state_dict
|
592 |
+
|
593 |
+
|
594 |
+
def main(args):
|
595 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
596 |
+
|
597 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
598 |
+
|
599 |
+
accelerator = Accelerator(
|
600 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
601 |
+
mixed_precision=args.mixed_precision,
|
602 |
+
log_with=args.report_to,
|
603 |
+
project_config=accelerator_project_config,
|
604 |
+
)
|
605 |
+
|
606 |
+
if args.report_to == "wandb":
|
607 |
+
if not is_wandb_available():
|
608 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
609 |
+
import wandb
|
610 |
+
|
611 |
+
# Make one log on every process with the configuration for debugging.
|
612 |
+
logging.basicConfig(
|
613 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
614 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
615 |
+
level=logging.INFO,
|
616 |
+
)
|
617 |
+
logger.info(accelerator.state, main_process_only=False)
|
618 |
+
if accelerator.is_local_main_process:
|
619 |
+
transformers.utils.logging.set_verbosity_warning()
|
620 |
+
diffusers.utils.logging.set_verbosity_info()
|
621 |
+
else:
|
622 |
+
transformers.utils.logging.set_verbosity_error()
|
623 |
+
diffusers.utils.logging.set_verbosity_error()
|
624 |
+
|
625 |
+
# If passed along, set the training seed now.
|
626 |
+
if args.seed is not None:
|
627 |
+
set_seed(args.seed)
|
628 |
+
|
629 |
+
# Generate class images if prior preservation is enabled.
|
630 |
+
if args.with_prior_preservation:
|
631 |
+
class_images_dir = Path(args.class_data_dir)
|
632 |
+
if not class_images_dir.exists():
|
633 |
+
class_images_dir.mkdir(parents=True)
|
634 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
635 |
+
|
636 |
+
if cur_class_images < args.num_class_images:
|
637 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
638 |
+
if args.prior_generation_precision == "fp32":
|
639 |
+
torch_dtype = torch.float32
|
640 |
+
elif args.prior_generation_precision == "fp16":
|
641 |
+
torch_dtype = torch.float16
|
642 |
+
elif args.prior_generation_precision == "bf16":
|
643 |
+
torch_dtype = torch.bfloat16
|
644 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
645 |
+
args.pretrained_model_name_or_path,
|
646 |
+
torch_dtype=torch_dtype,
|
647 |
+
revision=args.revision,
|
648 |
+
)
|
649 |
+
pipeline.set_progress_bar_config(disable=True)
|
650 |
+
|
651 |
+
num_new_images = args.num_class_images - cur_class_images
|
652 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
653 |
+
|
654 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
655 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
656 |
+
|
657 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
658 |
+
pipeline.to(accelerator.device)
|
659 |
+
|
660 |
+
for example in tqdm(
|
661 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
662 |
+
):
|
663 |
+
images = pipeline(example["prompt"]).images
|
664 |
+
|
665 |
+
for i, image in enumerate(images):
|
666 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
667 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
668 |
+
image.save(image_filename)
|
669 |
+
|
670 |
+
del pipeline
|
671 |
+
if torch.cuda.is_available():
|
672 |
+
torch.cuda.empty_cache()
|
673 |
+
|
674 |
+
# Handle the repository creation
|
675 |
+
if accelerator.is_main_process:
|
676 |
+
if args.output_dir is not None:
|
677 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
678 |
+
|
679 |
+
if args.push_to_hub:
|
680 |
+
repo_id = create_repo(
|
681 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
682 |
+
).repo_id
|
683 |
+
|
684 |
+
# Load the tokenizers
|
685 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
686 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False
|
687 |
+
)
|
688 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
689 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False
|
690 |
+
)
|
691 |
+
|
692 |
+
# import correct text encoder classes
|
693 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
694 |
+
args.pretrained_model_name_or_path, args.revision
|
695 |
+
)
|
696 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
697 |
+
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
|
698 |
+
)
|
699 |
+
|
700 |
+
# Load scheduler and models
|
701 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
702 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
703 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
704 |
+
)
|
705 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
706 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision
|
707 |
+
)
|
708 |
+
vae_path = (
|
709 |
+
args.pretrained_model_name_or_path
|
710 |
+
if args.pretrained_vae_model_name_or_path is None
|
711 |
+
else args.pretrained_vae_model_name_or_path
|
712 |
+
)
|
713 |
+
vae = AutoencoderKL.from_pretrained(
|
714 |
+
vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision
|
715 |
+
)
|
716 |
+
unet = UNet2DConditionModel.from_pretrained(
|
717 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
718 |
+
)
|
719 |
+
|
720 |
+
# We only train the additional adapter LoRA layers
|
721 |
+
vae.requires_grad_(False)
|
722 |
+
text_encoder_one.requires_grad_(False)
|
723 |
+
text_encoder_two.requires_grad_(False)
|
724 |
+
unet.requires_grad_(False)
|
725 |
+
|
726 |
+
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
|
727 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
728 |
+
weight_dtype = torch.float32
|
729 |
+
if accelerator.mixed_precision == "fp16":
|
730 |
+
weight_dtype = torch.float16
|
731 |
+
elif accelerator.mixed_precision == "bf16":
|
732 |
+
weight_dtype = torch.bfloat16
|
733 |
+
|
734 |
+
# Move unet, vae and text_encoder to device and cast to weight_dtype
|
735 |
+
# The VAE is in float32 to avoid NaN losses.
|
736 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
737 |
+
if args.pretrained_vae_model_name_or_path is None:
|
738 |
+
vae.to(accelerator.device, dtype=torch.float32)
|
739 |
+
else:
|
740 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
741 |
+
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
|
742 |
+
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
|
743 |
+
|
744 |
+
if args.enable_xformers_memory_efficient_attention:
|
745 |
+
if is_xformers_available():
|
746 |
+
import xformers
|
747 |
+
|
748 |
+
xformers_version = version.parse(xformers.__version__)
|
749 |
+
if xformers_version == version.parse("0.0.16"):
|
750 |
+
logger.warn(
|
751 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
752 |
+
)
|
753 |
+
unet.enable_xformers_memory_efficient_attention()
|
754 |
+
else:
|
755 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
756 |
+
|
757 |
+
if args.gradient_checkpointing:
|
758 |
+
unet.enable_gradient_checkpointing()
|
759 |
+
if args.train_text_encoder:
|
760 |
+
text_encoder_one.gradient_checkpointing_enable()
|
761 |
+
text_encoder_two.gradient_checkpointing_enable()
|
762 |
+
|
763 |
+
# now we will add new LoRA weights to the attention layers
|
764 |
+
# Set correct lora layers
|
765 |
+
unet_lora_attn_procs = {}
|
766 |
+
unet_lora_parameters = []
|
767 |
+
for name, attn_processor in unet.attn_processors.items():
|
768 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
769 |
+
if name.startswith("mid_block"):
|
770 |
+
hidden_size = unet.config.block_out_channels[-1]
|
771 |
+
elif name.startswith("up_blocks"):
|
772 |
+
block_id = int(name[len("up_blocks.")])
|
773 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
774 |
+
elif name.startswith("down_blocks"):
|
775 |
+
block_id = int(name[len("down_blocks.")])
|
776 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
777 |
+
|
778 |
+
lora_attn_processor_class = (
|
779 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
780 |
+
)
|
781 |
+
module = lora_attn_processor_class(
|
782 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.rank
|
783 |
+
)
|
784 |
+
unet_lora_attn_procs[name] = module
|
785 |
+
unet_lora_parameters.extend(module.parameters())
|
786 |
+
|
787 |
+
unet.set_attn_processor(unet_lora_attn_procs)
|
788 |
+
|
789 |
+
# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
|
790 |
+
# So, instead, we monkey-patch the forward calls of its attention-blocks.
|
791 |
+
if args.train_text_encoder:
|
792 |
+
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
|
793 |
+
text_lora_parameters_one = LoraLoaderMixin._modify_text_encoder(
|
794 |
+
text_encoder_one, dtype=torch.float32, rank=args.rank
|
795 |
+
)
|
796 |
+
text_lora_parameters_two = LoraLoaderMixin._modify_text_encoder(
|
797 |
+
text_encoder_two, dtype=torch.float32, rank=args.rank
|
798 |
+
)
|
799 |
+
|
800 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
801 |
+
def save_model_hook(models, weights, output_dir):
|
802 |
+
# there are only two options here. Either are just the unet attn processor layers
|
803 |
+
# or there are the unet and text encoder atten layers
|
804 |
+
unet_lora_layers_to_save = None
|
805 |
+
text_encoder_one_lora_layers_to_save = None
|
806 |
+
text_encoder_two_lora_layers_to_save = None
|
807 |
+
|
808 |
+
for model in models:
|
809 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
810 |
+
unet_lora_layers_to_save = unet_attn_processors_state_dict(model)
|
811 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
|
812 |
+
text_encoder_one_lora_layers_to_save = text_encoder_lora_state_dict(model)
|
813 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
|
814 |
+
text_encoder_two_lora_layers_to_save = text_encoder_lora_state_dict(model)
|
815 |
+
else:
|
816 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
817 |
+
|
818 |
+
# make sure to pop weight so that corresponding model is not saved again
|
819 |
+
weights.pop()
|
820 |
+
|
821 |
+
StableDiffusionXLPipeline.save_lora_weights(
|
822 |
+
output_dir,
|
823 |
+
unet_lora_layers=unet_lora_layers_to_save,
|
824 |
+
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
|
825 |
+
text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
|
826 |
+
)
|
827 |
+
|
828 |
+
def load_model_hook(models, input_dir):
|
829 |
+
unet_ = None
|
830 |
+
text_encoder_one_ = None
|
831 |
+
text_encoder_two_ = None
|
832 |
+
|
833 |
+
while len(models) > 0:
|
834 |
+
model = models.pop()
|
835 |
+
|
836 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
837 |
+
unet_ = model
|
838 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
|
839 |
+
text_encoder_one_ = model
|
840 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
|
841 |
+
text_encoder_two_ = model
|
842 |
+
else:
|
843 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
844 |
+
|
845 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
846 |
+
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
|
847 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
848 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_
|
849 |
+
)
|
850 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
851 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_
|
852 |
+
)
|
853 |
+
|
854 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
855 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
856 |
+
|
857 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
858 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
859 |
+
if args.allow_tf32:
|
860 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
861 |
+
|
862 |
+
if args.scale_lr:
|
863 |
+
args.learning_rate = (
|
864 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
865 |
+
)
|
866 |
+
|
867 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
868 |
+
if args.use_8bit_adam:
|
869 |
+
try:
|
870 |
+
import bitsandbytes as bnb
|
871 |
+
except ImportError:
|
872 |
+
raise ImportError(
|
873 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
874 |
+
)
|
875 |
+
|
876 |
+
optimizer_class = bnb.optim.AdamW8bit
|
877 |
+
else:
|
878 |
+
optimizer_class = torch.optim.AdamW
|
879 |
+
|
880 |
+
# Optimizer creation
|
881 |
+
params_to_optimize = (
|
882 |
+
itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
|
883 |
+
if args.train_text_encoder
|
884 |
+
else unet_lora_parameters
|
885 |
+
)
|
886 |
+
optimizer = optimizer_class(
|
887 |
+
params_to_optimize,
|
888 |
+
lr=args.learning_rate,
|
889 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
890 |
+
weight_decay=args.adam_weight_decay,
|
891 |
+
eps=args.adam_epsilon,
|
892 |
+
)
|
893 |
+
|
894 |
+
# Computes additional embeddings/ids required by the SDXL UNet.
|
895 |
+
# regular text emebddings (when `train_text_encoder` is not True)
|
896 |
+
# pooled text embeddings
|
897 |
+
# time ids
|
898 |
+
|
899 |
+
def compute_time_ids():
|
900 |
+
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
|
901 |
+
original_size = (args.resolution, args.resolution)
|
902 |
+
target_size = (args.resolution, args.resolution)
|
903 |
+
crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
|
904 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
905 |
+
add_time_ids = torch.tensor([add_time_ids])
|
906 |
+
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
|
907 |
+
return add_time_ids
|
908 |
+
|
909 |
+
if not args.train_text_encoder:
|
910 |
+
tokenizers = [tokenizer_one, tokenizer_two]
|
911 |
+
text_encoders = [text_encoder_one, text_encoder_two]
|
912 |
+
|
913 |
+
def compute_text_embeddings(prompt, text_encoders, tokenizers):
|
914 |
+
with torch.no_grad():
|
915 |
+
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
|
916 |
+
prompt_embeds = prompt_embeds.to(accelerator.device)
|
917 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
|
918 |
+
return prompt_embeds, pooled_prompt_embeds
|
919 |
+
|
920 |
+
# Handle instance prompt.
|
921 |
+
instance_time_ids = compute_time_ids()
|
922 |
+
if not args.train_text_encoder:
|
923 |
+
instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
|
924 |
+
args.instance_prompt, text_encoders, tokenizers
|
925 |
+
)
|
926 |
+
|
927 |
+
# Handle class prompt for prior-preservation.
|
928 |
+
if args.with_prior_preservation:
|
929 |
+
class_time_ids = compute_time_ids()
|
930 |
+
if not args.train_text_encoder:
|
931 |
+
class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
|
932 |
+
args.class_prompt, text_encoders, tokenizers
|
933 |
+
)
|
934 |
+
|
935 |
+
# Clear the memory here.
|
936 |
+
if not args.train_text_encoder:
|
937 |
+
del tokenizers, text_encoders
|
938 |
+
gc.collect()
|
939 |
+
torch.cuda.empty_cache()
|
940 |
+
|
941 |
+
# Pack the statically computed variables appropriately. This is so that we don't
|
942 |
+
# have to pass them to the dataloader.
|
943 |
+
add_time_ids = instance_time_ids
|
944 |
+
if args.with_prior_preservation:
|
945 |
+
add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0)
|
946 |
+
|
947 |
+
if not args.train_text_encoder:
|
948 |
+
prompt_embeds = instance_prompt_hidden_states
|
949 |
+
unet_add_text_embeds = instance_pooled_prompt_embeds
|
950 |
+
if args.with_prior_preservation:
|
951 |
+
prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
|
952 |
+
unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
|
953 |
+
else:
|
954 |
+
tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt)
|
955 |
+
tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt)
|
956 |
+
if args.with_prior_preservation:
|
957 |
+
class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt)
|
958 |
+
class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt)
|
959 |
+
tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
|
960 |
+
tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)
|
961 |
+
|
962 |
+
# Dataset and DataLoaders creation:
|
963 |
+
train_dataset = DreamBoothDataset(
|
964 |
+
instance_data_root=args.instance_data_dir,
|
965 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
966 |
+
class_num=args.num_class_images,
|
967 |
+
size=args.resolution,
|
968 |
+
center_crop=args.center_crop,
|
969 |
+
)
|
970 |
+
|
971 |
+
train_dataloader = torch.utils.data.DataLoader(
|
972 |
+
train_dataset,
|
973 |
+
batch_size=args.train_batch_size,
|
974 |
+
shuffle=True,
|
975 |
+
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
976 |
+
num_workers=args.dataloader_num_workers,
|
977 |
+
)
|
978 |
+
|
979 |
+
# Scheduler and math around the number of training steps.
|
980 |
+
overrode_max_train_steps = False
|
981 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
982 |
+
if args.max_train_steps is None:
|
983 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
984 |
+
overrode_max_train_steps = True
|
985 |
+
|
986 |
+
lr_scheduler = get_scheduler(
|
987 |
+
args.lr_scheduler,
|
988 |
+
optimizer=optimizer,
|
989 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
990 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
991 |
+
num_cycles=args.lr_num_cycles,
|
992 |
+
power=args.lr_power,
|
993 |
+
)
|
994 |
+
|
995 |
+
# Prepare everything with our `accelerator`.
|
996 |
+
if args.train_text_encoder:
|
997 |
+
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
998 |
+
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
|
999 |
+
)
|
1000 |
+
else:
|
1001 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1002 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
1006 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1007 |
+
if overrode_max_train_steps:
|
1008 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1009 |
+
# Afterwards we recalculate our number of training epochs
|
1010 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
1011 |
+
|
1012 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
1013 |
+
# The trackers initializes automatically on the main process.
|
1014 |
+
if accelerator.is_main_process:
|
1015 |
+
accelerator.init_trackers("dreambooth-lora-sd-xl", config=vars(args))
|
1016 |
+
|
1017 |
+
# Train!
|
1018 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
1019 |
+
|
1020 |
+
logger.info("***** Running training *****")
|
1021 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
1022 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
1023 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
1024 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
1025 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
1026 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
1027 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
1028 |
+
global_step = 0
|
1029 |
+
first_epoch = 0
|
1030 |
+
|
1031 |
+
# Potentially load in the weights and states from a previous save
|
1032 |
+
if args.resume_from_checkpoint:
|
1033 |
+
if args.resume_from_checkpoint != "latest":
|
1034 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1035 |
+
else:
|
1036 |
+
# Get the mos recent checkpoint
|
1037 |
+
dirs = os.listdir(args.output_dir)
|
1038 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1039 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1040 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1041 |
+
|
1042 |
+
if path is None:
|
1043 |
+
accelerator.print(
|
1044 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1045 |
+
)
|
1046 |
+
args.resume_from_checkpoint = None
|
1047 |
+
else:
|
1048 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1049 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1050 |
+
global_step = int(path.split("-")[1])
|
1051 |
+
|
1052 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
1053 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
1054 |
+
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
1055 |
+
|
1056 |
+
# Only show the progress bar once on each machine.
|
1057 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
1058 |
+
progress_bar.set_description("Steps")
|
1059 |
+
|
1060 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
1061 |
+
unet.train()
|
1062 |
+
if args.train_text_encoder:
|
1063 |
+
text_encoder_one.train()
|
1064 |
+
text_encoder_two.train()
|
1065 |
+
for step, batch in enumerate(train_dataloader):
|
1066 |
+
# Skip steps until we reach the resumed step
|
1067 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
1068 |
+
if step % args.gradient_accumulation_steps == 0:
|
1069 |
+
progress_bar.update(1)
|
1070 |
+
continue
|
1071 |
+
|
1072 |
+
with accelerator.accumulate(unet):
|
1073 |
+
if args.pretrained_vae_model_name_or_path is None:
|
1074 |
+
pixel_values = batch["pixel_values"]
|
1075 |
+
else:
|
1076 |
+
pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
|
1077 |
+
|
1078 |
+
# Convert images to latent space
|
1079 |
+
model_input = vae.encode(pixel_values).latent_dist.sample()
|
1080 |
+
model_input = model_input * vae.config.scaling_factor
|
1081 |
+
if args.pretrained_vae_model_name_or_path is None:
|
1082 |
+
model_input = model_input.to(weight_dtype)
|
1083 |
+
|
1084 |
+
# Sample noise that we'll add to the latents
|
1085 |
+
noise = torch.randn_like(model_input)
|
1086 |
+
bsz = model_input.shape[0]
|
1087 |
+
# Sample a random timestep for each image
|
1088 |
+
timesteps = torch.randint(
|
1089 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
1090 |
+
)
|
1091 |
+
timesteps = timesteps.long()
|
1092 |
+
|
1093 |
+
# Add noise to the model input according to the noise magnitude at each timestep
|
1094 |
+
# (this is the forward diffusion process)
|
1095 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
1096 |
+
|
1097 |
+
# Calculate the elements to repeat depending on the use of prior-preservation.
|
1098 |
+
elems_to_repeat = bsz // 2 if args.with_prior_preservation else bsz
|
1099 |
+
|
1100 |
+
# Predict the noise residual
|
1101 |
+
if not args.train_text_encoder:
|
1102 |
+
unet_added_conditions = {
|
1103 |
+
"time_ids": add_time_ids.repeat(elems_to_repeat, 1),
|
1104 |
+
"text_embeds": unet_add_text_embeds.repeat(elems_to_repeat, 1),
|
1105 |
+
}
|
1106 |
+
prompt_embeds = prompt_embeds.repeat(elems_to_repeat, 1, 1)
|
1107 |
+
model_pred = unet(
|
1108 |
+
noisy_model_input,
|
1109 |
+
timesteps,
|
1110 |
+
prompt_embeds,
|
1111 |
+
added_cond_kwargs=unet_added_conditions,
|
1112 |
+
).sample
|
1113 |
+
else:
|
1114 |
+
unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat, 1)}
|
1115 |
+
prompt_embeds, pooled_prompt_embeds = encode_prompt(
|
1116 |
+
text_encoders=[text_encoder_one, text_encoder_two],
|
1117 |
+
tokenizers=None,
|
1118 |
+
prompt=None,
|
1119 |
+
text_input_ids_list=[tokens_one, tokens_two],
|
1120 |
+
)
|
1121 |
+
unet_added_conditions.update({"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat, 1)})
|
1122 |
+
prompt_embeds = prompt_embeds.repeat(elems_to_repeat, 1, 1)
|
1123 |
+
model_pred = unet(
|
1124 |
+
noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs=unet_added_conditions
|
1125 |
+
).sample
|
1126 |
+
|
1127 |
+
# Get the target for loss depending on the prediction type
|
1128 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1129 |
+
target = noise
|
1130 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1131 |
+
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
|
1132 |
+
else:
|
1133 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1134 |
+
|
1135 |
+
if args.with_prior_preservation:
|
1136 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
1137 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
1138 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
1139 |
+
|
1140 |
+
# Compute instance loss
|
1141 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1142 |
+
|
1143 |
+
# Compute prior loss
|
1144 |
+
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
1145 |
+
|
1146 |
+
# Add the prior loss to the instance loss.
|
1147 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
1148 |
+
else:
|
1149 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1150 |
+
|
1151 |
+
accelerator.backward(loss)
|
1152 |
+
if accelerator.sync_gradients:
|
1153 |
+
params_to_clip = (
|
1154 |
+
itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
|
1155 |
+
if args.train_text_encoder
|
1156 |
+
else unet_lora_parameters
|
1157 |
+
)
|
1158 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1159 |
+
optimizer.step()
|
1160 |
+
lr_scheduler.step()
|
1161 |
+
optimizer.zero_grad()
|
1162 |
+
|
1163 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1164 |
+
if accelerator.sync_gradients:
|
1165 |
+
progress_bar.update(1)
|
1166 |
+
global_step += 1
|
1167 |
+
|
1168 |
+
if accelerator.is_main_process:
|
1169 |
+
if global_step % args.checkpointing_steps == 0:
|
1170 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1171 |
+
if args.checkpoints_total_limit is not None:
|
1172 |
+
checkpoints = os.listdir(args.output_dir)
|
1173 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1174 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1175 |
+
|
1176 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1177 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1178 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1179 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1180 |
+
|
1181 |
+
logger.info(
|
1182 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1183 |
+
)
|
1184 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1185 |
+
|
1186 |
+
for removing_checkpoint in removing_checkpoints:
|
1187 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1188 |
+
shutil.rmtree(removing_checkpoint)
|
1189 |
+
|
1190 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1191 |
+
accelerator.save_state(save_path)
|
1192 |
+
logger.info(f"Saved state to {save_path}")
|
1193 |
+
|
1194 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1195 |
+
progress_bar.set_postfix(**logs)
|
1196 |
+
accelerator.log(logs, step=global_step)
|
1197 |
+
|
1198 |
+
if global_step >= args.max_train_steps:
|
1199 |
+
break
|
1200 |
+
|
1201 |
+
if accelerator.is_main_process:
|
1202 |
+
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
|
1203 |
+
logger.info(
|
1204 |
+
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
1205 |
+
f" {args.validation_prompt}."
|
1206 |
+
)
|
1207 |
+
# create pipeline
|
1208 |
+
if not args.train_text_encoder:
|
1209 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
1210 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
1211 |
+
)
|
1212 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
1213 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision
|
1214 |
+
)
|
1215 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
1216 |
+
args.pretrained_model_name_or_path,
|
1217 |
+
vae=vae,
|
1218 |
+
text_encoder=accelerator.unwrap_model(text_encoder_one),
|
1219 |
+
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
|
1220 |
+
unet=accelerator.unwrap_model(unet),
|
1221 |
+
revision=args.revision,
|
1222 |
+
torch_dtype=weight_dtype,
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1226 |
+
scheduler_args = {}
|
1227 |
+
|
1228 |
+
if "variance_type" in pipeline.scheduler.config:
|
1229 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1230 |
+
|
1231 |
+
if variance_type in ["learned", "learned_range"]:
|
1232 |
+
variance_type = "fixed_small"
|
1233 |
+
|
1234 |
+
scheduler_args["variance_type"] = variance_type
|
1235 |
+
|
1236 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
1237 |
+
pipeline.scheduler.config, **scheduler_args
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
pipeline = pipeline.to(accelerator.device)
|
1241 |
+
pipeline.set_progress_bar_config(disable=True)
|
1242 |
+
|
1243 |
+
# run inference
|
1244 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
1245 |
+
pipeline_args = {"prompt": args.validation_prompt}
|
1246 |
+
|
1247 |
+
with torch.cuda.amp.autocast():
|
1248 |
+
images = [
|
1249 |
+
pipeline(**pipeline_args, generator=generator).images[0]
|
1250 |
+
for _ in range(args.num_validation_images)
|
1251 |
+
]
|
1252 |
+
|
1253 |
+
for tracker in accelerator.trackers:
|
1254 |
+
if tracker.name == "tensorboard":
|
1255 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
1256 |
+
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
1257 |
+
if tracker.name == "wandb":
|
1258 |
+
tracker.log(
|
1259 |
+
{
|
1260 |
+
"validation": [
|
1261 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1262 |
+
for i, image in enumerate(images)
|
1263 |
+
]
|
1264 |
+
}
|
1265 |
+
)
|
1266 |
+
|
1267 |
+
del pipeline
|
1268 |
+
torch.cuda.empty_cache()
|
1269 |
+
|
1270 |
+
# Save the lora layers
|
1271 |
+
accelerator.wait_for_everyone()
|
1272 |
+
if accelerator.is_main_process:
|
1273 |
+
unet = accelerator.unwrap_model(unet)
|
1274 |
+
unet = unet.to(torch.float32)
|
1275 |
+
unet_lora_layers = unet_attn_processors_state_dict(unet)
|
1276 |
+
|
1277 |
+
if args.train_text_encoder:
|
1278 |
+
text_encoder_one = accelerator.unwrap_model(text_encoder_one)
|
1279 |
+
text_encoder_lora_layers = text_encoder_lora_state_dict(text_encoder_one.to(torch.float32))
|
1280 |
+
text_encoder_two = accelerator.unwrap_model(text_encoder_two)
|
1281 |
+
text_encoder_2_lora_layers = text_encoder_lora_state_dict(text_encoder_two.to(torch.float32))
|
1282 |
+
else:
|
1283 |
+
text_encoder_lora_layers = None
|
1284 |
+
text_encoder_2_lora_layers = None
|
1285 |
+
|
1286 |
+
StableDiffusionXLPipeline.save_lora_weights(
|
1287 |
+
save_directory=args.output_dir,
|
1288 |
+
unet_lora_layers=unet_lora_layers,
|
1289 |
+
text_encoder_lora_layers=text_encoder_lora_layers,
|
1290 |
+
text_encoder_2_lora_layers=text_encoder_2_lora_layers,
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
# Final inference
|
1294 |
+
# Load previous pipeline
|
1295 |
+
vae = AutoencoderKL.from_pretrained(
|
1296 |
+
vae_path,
|
1297 |
+
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
|
1298 |
+
revision=args.revision,
|
1299 |
+
torch_dtype=weight_dtype,
|
1300 |
+
)
|
1301 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
1302 |
+
args.pretrained_model_name_or_path, vae=vae, revision=args.revision, torch_dtype=weight_dtype
|
1303 |
+
)
|
1304 |
+
|
1305 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1306 |
+
scheduler_args = {}
|
1307 |
+
|
1308 |
+
if "variance_type" in pipeline.scheduler.config:
|
1309 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1310 |
+
|
1311 |
+
if variance_type in ["learned", "learned_range"]:
|
1312 |
+
variance_type = "fixed_small"
|
1313 |
+
|
1314 |
+
scheduler_args["variance_type"] = variance_type
|
1315 |
+
|
1316 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
|
1317 |
+
|
1318 |
+
pipeline = pipeline.to(accelerator.device)
|
1319 |
+
|
1320 |
+
# load attention processors
|
1321 |
+
pipeline.load_lora_weights(args.output_dir)
|
1322 |
+
|
1323 |
+
# run inference
|
1324 |
+
images = []
|
1325 |
+
if args.validation_prompt and args.num_validation_images > 0:
|
1326 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
1327 |
+
images = [
|
1328 |
+
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
|
1329 |
+
for _ in range(args.num_validation_images)
|
1330 |
+
]
|
1331 |
+
|
1332 |
+
for tracker in accelerator.trackers:
|
1333 |
+
if tracker.name == "tensorboard":
|
1334 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
1335 |
+
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
|
1336 |
+
if tracker.name == "wandb":
|
1337 |
+
tracker.log(
|
1338 |
+
{
|
1339 |
+
"test": [
|
1340 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1341 |
+
for i, image in enumerate(images)
|
1342 |
+
]
|
1343 |
+
}
|
1344 |
+
)
|
1345 |
+
|
1346 |
+
if args.push_to_hub:
|
1347 |
+
save_model_card(
|
1348 |
+
repo_id,
|
1349 |
+
images=images,
|
1350 |
+
base_model=args.pretrained_model_name_or_path,
|
1351 |
+
train_text_encoder=args.train_text_encoder,
|
1352 |
+
prompt=args.instance_prompt,
|
1353 |
+
repo_folder=args.output_dir,
|
1354 |
+
vae_path=args.pretrained_vae_model_name_or_path,
|
1355 |
+
)
|
1356 |
+
upload_folder(
|
1357 |
+
repo_id=repo_id,
|
1358 |
+
folder_path=args.output_dir,
|
1359 |
+
commit_message="End of training",
|
1360 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
accelerator.end_training()
|
1364 |
+
|
1365 |
+
|
1366 |
+
if __name__ == "__main__":
|
1367 |
+
args = parse_args()
|
1368 |
+
main(args)
|
unet/config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "CompVis/stable-diffusion-v1-4",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"block_out_channels": [
|
11 |
+
320,
|
12 |
+
640,
|
13 |
+
1280,
|
14 |
+
1280
|
15 |
+
],
|
16 |
+
"center_input_sample": false,
|
17 |
+
"class_embed_type": null,
|
18 |
+
"class_embeddings_concat": false,
|
19 |
+
"conv_in_kernel": 3,
|
20 |
+
"conv_out_kernel": 3,
|
21 |
+
"cross_attention_dim": 768,
|
22 |
+
"cross_attention_norm": null,
|
23 |
+
"down_block_types": [
|
24 |
+
"CrossAttnDownBlock2D",
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"DownBlock2D"
|
28 |
+
],
|
29 |
+
"downsample_padding": 1,
|
30 |
+
"dual_cross_attention": false,
|
31 |
+
"encoder_hid_dim": null,
|
32 |
+
"encoder_hid_dim_type": null,
|
33 |
+
"flip_sin_to_cos": true,
|
34 |
+
"freq_shift": 0,
|
35 |
+
"in_channels": 4,
|
36 |
+
"layers_per_block": 2,
|
37 |
+
"mid_block_only_cross_attention": null,
|
38 |
+
"mid_block_scale_factor": 1,
|
39 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
40 |
+
"norm_eps": 1e-05,
|
41 |
+
"norm_num_groups": 32,
|
42 |
+
"num_attention_heads": null,
|
43 |
+
"num_class_embeds": null,
|
44 |
+
"only_cross_attention": false,
|
45 |
+
"out_channels": 4,
|
46 |
+
"projection_class_embeddings_input_dim": null,
|
47 |
+
"resnet_out_scale_factor": 1.0,
|
48 |
+
"resnet_skip_time_act": false,
|
49 |
+
"resnet_time_scale_shift": "default",
|
50 |
+
"sample_size": 64,
|
51 |
+
"time_cond_proj_dim": null,
|
52 |
+
"time_embedding_act_fn": null,
|
53 |
+
"time_embedding_dim": null,
|
54 |
+
"time_embedding_type": "positional",
|
55 |
+
"timestep_post_act": null,
|
56 |
+
"transformer_layers_per_block": 1,
|
57 |
+
"up_block_types": [
|
58 |
+
"UpBlock2D",
|
59 |
+
"CrossAttnUpBlock2D",
|
60 |
+
"CrossAttnUpBlock2D",
|
61 |
+
"CrossAttnUpBlock2D"
|
62 |
+
],
|
63 |
+
"upcast_attention": false,
|
64 |
+
"use_linear_projection": false
|
65 |
+
}
|
unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d36ad3e9ee24f61f68ef2b7cd8bc49bededf60d0a5471f62d01738048725fa7b
|
3 |
+
size 3438375973
|
vae/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "/home/ubuntu/.cache/huggingface/hub/models--CompVis--stable-diffusion-v1-4/snapshots/b95be7d6f134c3a9e62ee616f310733567f069ce/vae",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"force_upcast": true,
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 4,
|
21 |
+
"layers_per_block": 2,
|
22 |
+
"norm_num_groups": 32,
|
23 |
+
"out_channels": 3,
|
24 |
+
"sample_size": 512,
|
25 |
+
"scaling_factor": 0.18215,
|
26 |
+
"up_block_types": [
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D",
|
30 |
+
"UpDecoderBlock2D"
|
31 |
+
]
|
32 |
+
}
|
vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c02e0c7c263a4c0630ca3a72380ff55b9e38e0ab41d64dff7bf620a58342bc75
|
3 |
+
size 334712113
|