--- license: mit tags: - LIQUID - PENETRANT - TEST - INSPECTION - DETECTION --- # Liquid Penetrant Test (DP, LPI, PT) Detection of liquid penetrant test with AI (Yolo11) #### Supported Labels ['defecto'] #### ALL my models YOLO11, YOLOv10 & YOLOv9 - Yolov9c: https://huggingface.co/jparedesDS/cs2-yolov9c - Yolov10s: https://huggingface.co/jparedesDS/cs2-yolov10s - Yolov10m: https://huggingface.co/jparedesDS/cs2-yolov10m - Yolov10b: https://huggingface.co/jparedesDS/cs2-yolov10b - Yolov10b: https://huggingface.co/jparedesDS/valorant-yolov10b - Yolo11x: https://huggingface.co/jparedesDS/welding-defects-detection #### How to use ``` from ultralytics import YOLO # Load a pretrained YOLO model model = YOLO(r'weights\yolo11l_LPI.pt') # Run inference on 'image.png' with arguments model.predict( 'image.png', save=True, device=0 ) ``` #### Confusion matrix normalized ![confusion_matrix_normalized.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/cW-e-XzOwhyTbaNdCHEJc.png) #### Labels ![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/eVEQyEO6ddZVgPW9RdzOu.jpeg) #### Results ![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/xgQm7K5mSHq9cDwDLW8Hz.png) #### Predict ![val_batch1_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/7n8JsgcalT6nAMgpAdB4V.jpeg) ![val_batch2_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/81CEGAahhFqSZ7PaW-ai3.jpeg) ``` YOLO11l summary (fused): 464 layers, 25,280,083 parameters, 0 gradients, 86.6 GFLOPs Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 12/12 [00:05<00:00, 2.32it/s] all 836 752 0.794 0.771 0.793 0.379 ``` #### Others models... https://huggingface.co/jparedesDS/welding-defects-detection